F

Т

A

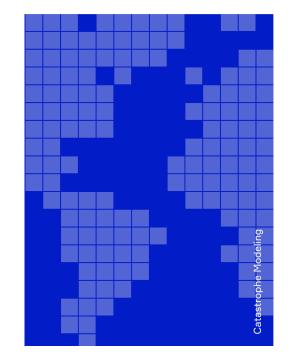
Η

Μ

0

Flood Modelling Methodology: Choices & Consequences

Dr. Oliver Wing, Fathom


Formed out of the University of Bristol Hydrology Research Group in 2013. Co-founded by a team of world-leading flood scientists. Aiming to provide comprehensive water risk intelligence for the entire planet. Open methods and academic research are inviolable tenets of our foundation.

Current products

Flood maps

- Global Flood Map
- US Flood Map
- UK Flood Map
- Japan Flood Map

Catastrophe models

- US Flood CAT
- UK Flood CAT

Terrain data

- Global Terrain Data - FABDEM

FABDEM

Savage et al. (2016), *Hydrol. Process.* 30, 2014-2032.

Savage et al. (2016), *Water Resour. Res.* 52, 9146-9163.

Devitt et al. (2021), *Environ. Res. Lett.* 16, 064013.

Neal et al. (2012), *Water Resour. Res.* 48, 012514.

Sampson et al. (2014), *Hydrol. Earth Syst. Sci.* 18, 2305-2324.

Hawker et al. (2018), *Front. Earth. Sci.* 6, 233.

Hocini et al. (2021), *Hydrol. Earth Syst. Sci.* 25, 2979-2995.

Gutenson et al. (2023), *Nat. Hazards Earth Syst. Sci.* 23, 261-277.

- Elevation data accuracy dictates model skill
 - Good LiDAR coverage in UK; low coverage globally
 - Accuracy ≠ Precision: grid resolution is generally not limiting when higher than 20–50 m

Savage et al. (2016), *Hydrol. Process.* 30, 2014-2032.

Savage et al. (2016), *Water Resour. Res.* 52, 9146-9163.

Devitt et al. (2021), *Environ. Res. Lett.* 16, 064013.

Neal et al. (2012), *Water Resour. Res.* 48, 012514.

Sampson et al. (2014), *Hydrol. Earth Syst. Sci.* 18, 2305-2324.

Hawker et al. (2018), *Front. Earth. Sci.* 6, 233.

Hocini et al. (2021), *Hydrol. Earth Syst. Sci.* 25, 2979-2995.

Gutenson et al. (2023), *Nat. Hazards Earth Syst. Sci.* 23, 261-277.

- Elevation data accuracy dictates model skill
 - Good LiDAR coverage in UK; low coverage globally
 - Accuracy ≠ Precision: grid resolution is generally not limiting when higher than 20–50 m
- How much water you put into the model is important!
 - Statistical models fitted to river gauges generally much less biased than rainfall-runoff models
 - Choice of rainfall data can change tail loss by factor ~100

Savage et al. (2016), *Hydrol. Process.* 30, 2014-2032.

Savage et al. (2016), *Water Resour. Res.* 52, 9146-9163.

Devitt et al. (2021), *Environ. Res. Lett.* 16, 064013.

Neal et al. (2012), *Water Resour. Res.* 48, 012514.

Sampson et al. (2014), *Hydrol. Earth Syst. Sci.* 18, 2305-2324.

Hawker et al. (2018), *Front. Earth. Sci.* 6, 233.

Hocini et al. (2021), *Hydrol. Earth Syst. Sci.* 25, 2979-2995.

Gutenson et al. (2023), *Nat. Hazards Earth Syst. Sci.* 23, 261-277.

- Elevation data accuracy dictates model skill
 - Good LiDAR coverage in UK; low coverage globally
 - Accuracy ≠ Precision: grid resolution is generally not limiting when higher than 20–50 m
- How much water you put into the model is important!
 - Statistical models fitted to river gauges generally much less biased than rainfall-runoff models
 - Choice of rainfall data can change tail loss by factor ~100
- Huge biases if you don't properly represent river channels
 - Convey the bulk of flood flows
 - Grid resolution and manual labour much more important without sub-grid channels
 - Choice of bankfull frequency extremely sensitive

Savage et al. (2016), *Hydrol. Process.* 30, 2014-2032.

Savage et al. (2016), *Water Resour. Res.* 52, 9146-9163.

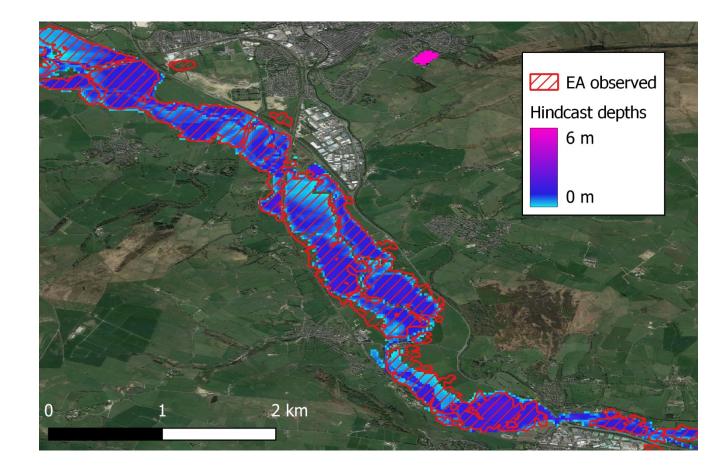
Devitt et al. (2021), *Environ. Res. Lett.* 16, 064013.

Neal et al. (2012), *Water Resour. Res.* 48, 012514.

Sampson et al. (2014), *Hydrol. Earth Syst. Sci.* 18, 2305-2324.

Hawker et al. (2018), *Front. Earth. Sci.* 6, 233.

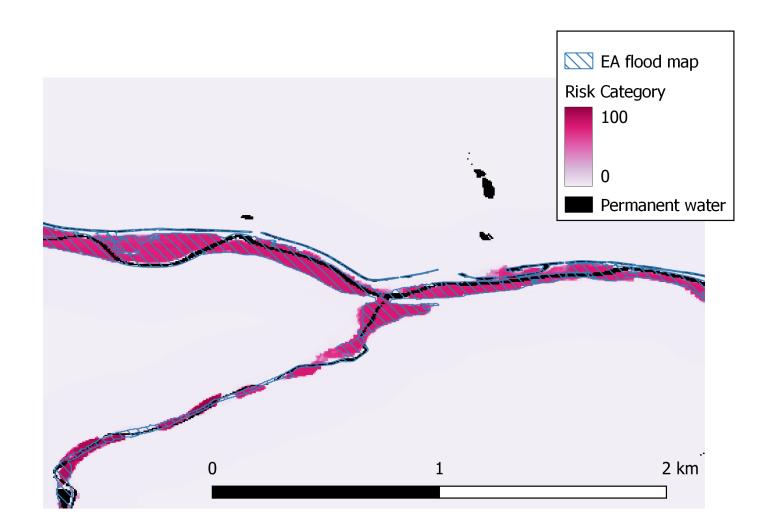
Hocini et al. (2021), *Hydrol. Earth Syst. Sci.* 25, 2979-2995.


Gutenson et al. (2023), *Nat. Hazards Earth Syst. Sci.* 23, 261-277.

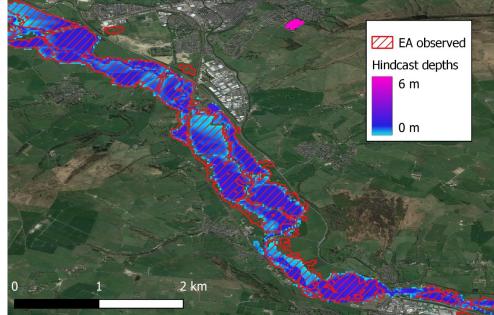
- Elevation data accuracy dictates model skill
 - Good LiDAR coverage in UK; low coverage globally
 - Accuracy ≠ Precision: grid resolution is generally not limiting when higher than 20–50 m
- How much water you put into the model is important!
 - Statistical models fitted to river gauges generally much less biased than rainfall-runoff models
 - Choice of rainfall data can change tail loss by factor ~100
- Huge biases if you don't properly represent river channels
 - Convey the bulk of flood flows
 - Grid resolution and manual labour much more important without sub-grid channels
 - Choice of bankfull frequency extremely sensitive
- You need to solve some form of the shallow water equations
 - Which form doesn't matter too much
 - GIS / HAND / planar approximations don't really work

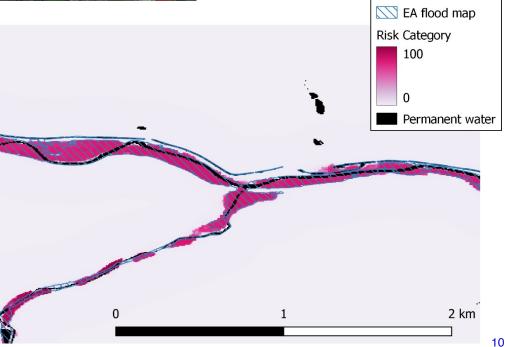
Storm Ciara

Hazard validation should be commonplace given data availability


 Automated event hindcast built with AXA against observations

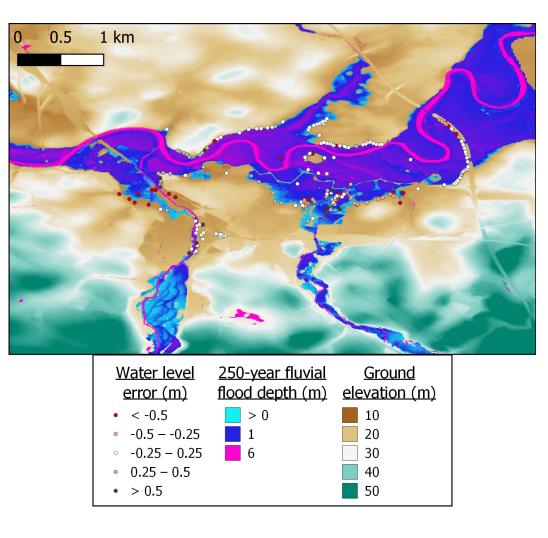
Storm Ciara


Hazard validation should be commonplace given data availability


- Automated event hindcast built with AXA against observations
- Risk Categories against local models

Methods well suited for river floods

- Dominated by terrain rather than surface features
- Less sensitive to microtopography: • higher resolutions not so important
- Defence structures generally better understood in UK
- Channel solver properly conveys flow
- No need to drive hydraulics with rainfall data or runoff models
- Smaller climate signal



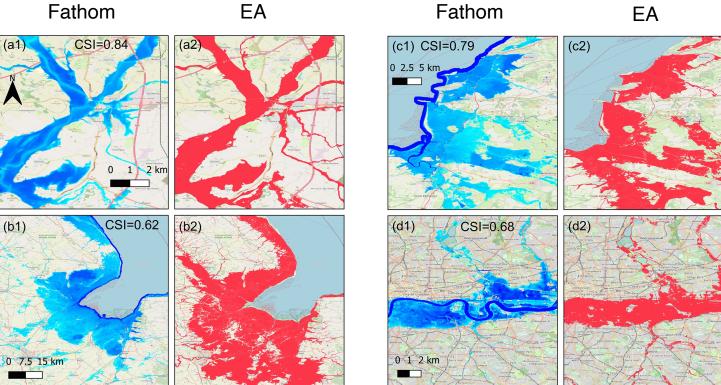
Hazard validation

Carlisle (2005) high-water marks

- Error: 30 40 cm
- Bias: -4 cm

Bates et al. (2023), A climate-conditioned catastrophe risk model for UK flooding. *Nat. Hazards Earth Syst. Sci.* **23**, 891-908.

Hazard validation


Carlisle (2005) high-water marks:

- Error: 30 40 cm
- Bias: -4 cm

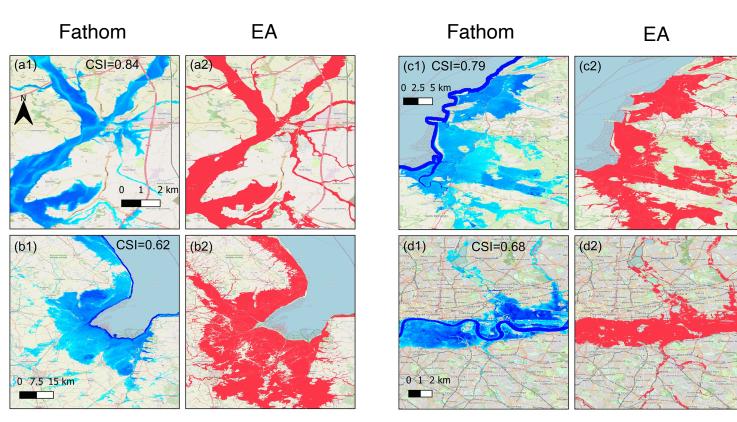
National flood maps (CSI = Critical Success Index):

(b1)

- England: 0.65 •
- Wales: 0.76 •

Bates et al. (2023), A climate-conditioned catastrophe risk model for UK flooding. Nat. Hazards Earth Syst. Sci. 23, 891-908.

Hazard validation

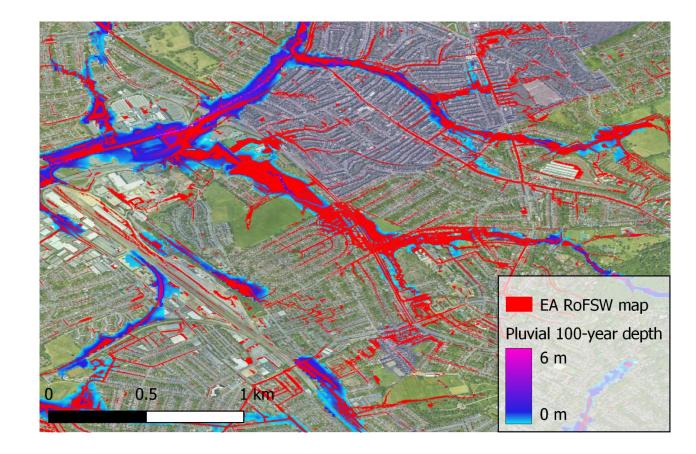

Carlisle (2005) high-water marks:

- Error: 30 40 cm
- Bias: -4 cm •

National flood maps (CSI = Critical Success Index):

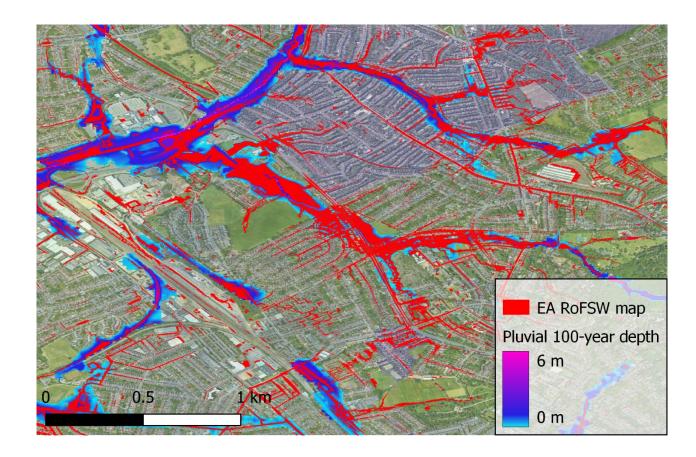
- England: 0.65 •
- Wales: 0.76 •

Difficult to validate high-frequency events



13

London surface water floods


Pluvial hazard more tricky to validate

• EA surface water flood maps differ to Fathom pluvial flood maps

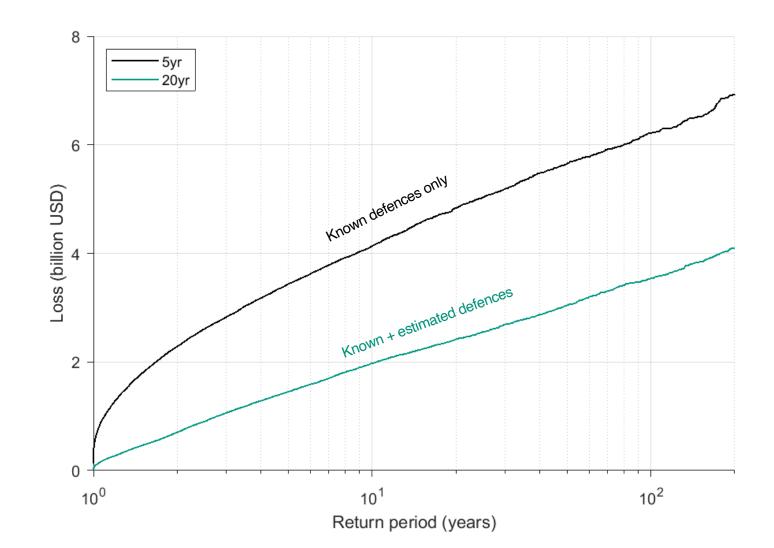
Large-domain models struggle for urban pluvial floods

- Grid resolution more important, though needs to be consistent with other components
- Fine grids are misleading if representation of buildings, streets, culverts, storm drains is poor
- Localised rainfall extremes are poorly observed
- Climate signal invalidates
 observations anyway

Subjectivity amidst data scarcity

Some of the very sensitive choices:

Hazard

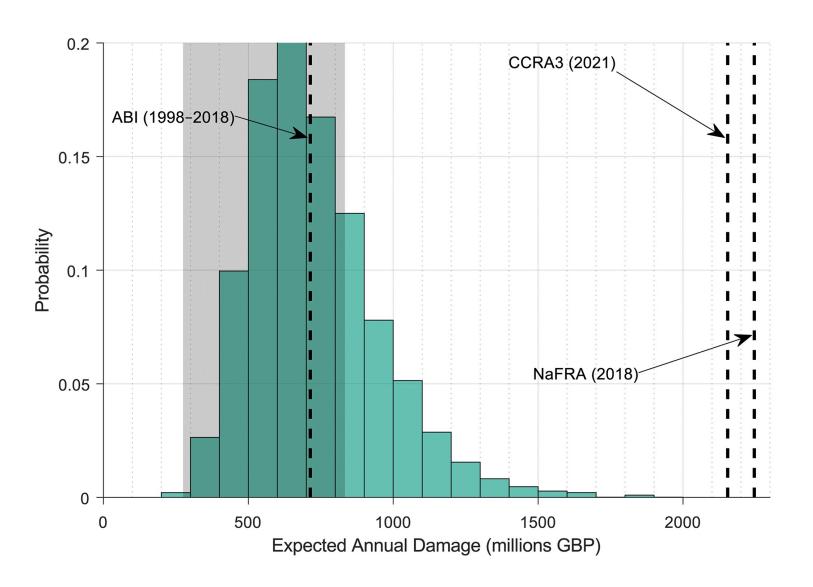

- Bankfull discharge frequency
- Defence assumptions
- Surface water thresholding

Exposure

• Default ground floor heights

Vulnerability

 Very wide range of plausible damage functions


Loss calibration

Tweak unconstrained parameters within likely bounds to reproduce loss experience

The short history we experienced could have taken many forms – so which version do you calibrate to?

A **choice** to reproduce recent historical averages

– would it be equally as justifiable to target ~50–200% of the average?

Bates et al. (2023), A climate-conditioned catastrophe risk model for UK flooding. *Nat. Hazards Earth Syst. Sci.* **23**, 891-908.

Conclusions

www.fathom.global @oejwing o.wing@fathom.global

- Flood catastrophe modelling is undergoing a revolution but it is still young
- Plenty of skill in *relative* terms *absolute* bias can be difficult to quantify
 - Calibration swaps model bias for observation bias
- Value judgements often masquerade as objective decisions
- Mistrust breeds model misuse true transparency through academic best practices helps
- We don't know everything, but we know enough to make good decisions