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Abstract Statistical decision theory can provide useful support for climate change decisions made under

conditions of uncertainty. However, the probability distributions used to calculate expected costs in decision

theory are themselves subject to uncertainty, disagreement, or ambiguity in their specification. This

imprecision can be described using sets of probability measures, from which upper and lower bounds on

expectations can be calculated. However, many representations, or classes, of probability measures are

possible. We describe six of the more useful classes and demonstrate how each may be used to represent

climate change uncertainties. When expected costs are specified by bounds, rather than precise values, the

conventional decision criterion of minimum expected cost is insufficient to reach a unique decision.

Alternative criteria are required, and the criterion of minimum upper expected cost may be desirable because

it is consistent with the precautionary principle. Using simple climate and economics models as an example,

we determine the carbon dioxide emissions levels that have minimum upper expected cost for each of the

selected classes. There can be wide differences in these emissions levels and their associated costs,

emphasizing the need for care when selecting an appropriate class.

Keywords Climate change; cost-benefit analysis; decision theory; imprecise probability; precautionary

principle; upper and lower probabilities

Introduction

In the third assessment report of the Intergovernmental Panel on Climate Change (IPCC),

climate scientists predicted that global average temperature would increase between 1.4

and 5.8 8C by 2100 (IPCC, 2001). No assessment was made of the relative likelihood of

intermediate warming values. This is because the participating scientists held divergent

views on the magnitude of warming and believed that a single probability distribution

could not capture this divergence of opinion. There was also a sense that probabilities,

which are normally based on repeated experiments and frequencies of measured out-

comes, could not be derived for such a singular event (Pittock et al., 2001).

This situation leaves policy makers who want to plan for, or mitigate, climate change

in the very difficult position of having to construe probability distributions for them-

selves. Expression of uncertainty in the form of a probability distribution is not simply an

exercise in describing how well we know a particular quantity, but rather is the first step

in reaching a rational decision. Informally, probabilities allow one to hedge decisions

away from potentially large losses, with a “hedge factor” that depends on the amount of

uncertainty (Reckhow, 1994). More formally, the probability distribution can be used to

determine “expected cost” for decision options, calculated through integration of a cost

function over the probability distribution (Raiffa and Schlaifer, 1968). The option can

then be selected that minimizes the expected cost.

Application of the decision theoretic procedure described above to the climate change

problem has been considered by Kann and Weyant (2000) and Tol (2003). Each has con-

cluded that the representation of uncertainty is a critical determinant of the results of

analysis. Unfortunately, as the IPCC statement above exemplifies, there is not agreement
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on the interpretation of probabilities in this context, nor does the conventional theory

seem to capture the variety of uncertainties encountered in practice. Methods for repre-

senting uncertainty in climate change assessment therefore require further development

(Pittock et al., 2001).

In this paper, we propose the use of sets of probability measures (Berger, 1984) to

describe uncertainty in predictions of future climate change. This concept has the poten-

tial to capture ambiguity or disagreement in probability specification and may be a more

realistic portrayal of the current state of scientific knowledge than precisely specified dis-

tributions. Kriegler and Held (2003) used sets defined as bounds on cumulative distri-

butions to quantify imprecision in probabilistic climate change forecasts. However, other

representations are also possible, and we believe that greater consideration should be

given to the choice of method, especially in light of the full decision context. In this

paper, we describe several useful set representations and demonstrate how each might be

used to portray climate change uncertainties. We also discuss the implications for applied

decision theory and suggest alternative decision criteria, such as an economic version of

the precautionary principle, that may help resolve problems induced by high imprecision

in probability specification.

Representation of climate change uncertainties

Much effort has been made recently to quantify uncertainties in climate change prediction

(see reviews by Kann and Weyant, 2000; Katz, 2002). A typical approach is to represent

uncertainty in future emissions of greenhouse gases (GHGs) by scenarios representing

various assumptions about key socio-economic drivers such as population, economic

growth, and energy technology. Emissions scenarios are then converted into atmospheric

concentrations of GHGs and resultant temperature changes using one or more general

circulation models (GCMs). Uncertainty in the predictions of these models is generally

estimated by developing probability distributions for key parameters, which are then pro-

pagated through the models using a Monte Carlo method. Model structural uncertainty is

usually assessed by generating and comparing results from multiple model formulations.

For computational reasons, simplified models that emulate the behavior of more complex

GCMs are often used. The result of such an analysis is usually a probability distribution

for global or regional temperature increase corresponding to each emissions scenario. A

representative example of this approach is the analysis of New and Hulme (2000).

Of course, the results of such uncertainty analyses are sensitive to the choice of prob-

ability distributions for the model parameters. Often, subjective judgment is the main

determinant of this choice, and the expert elicitations of Morgan and Keith (1995) are a

common source of such judgment. More recently, expert judgment has been combined

with data-based estimates using Bayesian updating (Webster and Sokolov, 2000; Forest

et al., 2002; Webster et al., 2003). However, due to the limited ability of historical data

to resolve the value of key parameters, the distributions that result are still highly sensi-

tive to the expert “priors.” This is disconcerting, especially considering the disagreement

often found among experts.

Keith (1996) argues that, rather than combine the judgments of multiple experts, as

has been done for most uncertainty analyses, the divergence of opinion should be main-

tained by propagating the distributions of the individual experts separately. While con-

ceptually this may be an ideal solution, practically the presentation to policy makers of

dozens of probability distributions for each emissions scenario is likely to overwhelm

their analytical capabilities. It is not even clear how such sets of results can be used to

reach a decision consistent with conventional decision criteria.
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Bounding analysis has been proposed as a solution to this problem of disagreement

and ambiguity (Keith, 1996). One form of bounding as it relates to probability distri-

butions involves the concept of imprecise probabilities (Reichert, 1997). Rather than

choosing a single, precisely defined distribution to describe an uncertain quantity, a set of

distributions is employed. For example, Kriegler and Held (2003) chose to summarize the

divergent results of the Bayesian analysis of Forest et al. (2002) using upper and lower

bounds on the cumulative distribution function (CDF) of two key climate model par-

ameters. These were then used to define random sets which were projected onto the range

of global mean temperature increase using a simplified climate model. The resulting esti-

mates of warming were very imprecise.

One reason for high imprecision in the results of Kriegler and Held (2003) may be

their choice of set representation. Sets defined by upper and lower bounds on the CDF

allow probability density functions that have sharp peaks at specific values. These den-

sities may be implausible to climate experts and can be avoided with other represen-

tations. For example, sets might be defined by upper and lower bounds on densities,

rather than cumulative distributions. The choice of an appropriate representation should

depend on more detailed statements by the climate experts that provide the prior distri-

butions, or on the specific assumptions employed in the Bayesian inference procedure.

The intended use of the results, such as in a decision theoretic analysis, should also be

considered in deciding what assumptions about sets are appropriate.

Because the assumptions behind the various set representations, or classes, are not

always immediately clear, in the remainder of this section we outline some of the more

useful classes. In the next section, we then apply these classes to the problem of climate

change assessment in an effort to explore the implications of imprecision and class selec-

tion for decision making.

Parametric families

The parameters (e.g. mean, standard deviation, scale) of any distributional family can be

specified using intervals, rather than precise values, thus defining a set of distributions in

the family. Computations with parametric families are relatively straightforward and the

results can be conveniently communicated. The main disadvantage of parametric classes

is that they may fail to capture a wide range of realistically possible distributions. The

assumptions that underlie the use of a specific parametric family are rather strong.

Probability box

Let L and U be nondecreasing functions from the real line to [0,1] with LðuÞ # UðuÞ.

Then a set of probability distributions called a probability box (or distribution band) can

be defined by:

GPB
L;U ¼ {p : LðuÞ # FðuÞ # UðuÞ}

where F denotes the cumulative distribution function (CDF) of the probability distri-

bution p. In words, a probability box is a set of probability distributions, the CDFs of

which are contained by given upper and lower bounds. Probability boxes will include dis-

tributions that have point masses, that is, probability distributions with discontinuous

CDFs. Such distributions may be considered unreasonable in some cases. Methods for

calculating bounds on expectations resulting from distribution bands are given by Basu

and DasGupta (1995).
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Quantile classes

A continuous parameter space Q is partitioned into m disjoint segments, such that

Q ¼ I1 <…< Im. For i [ {1; … ;m}, let li and ui satisfy li # ui and Sli # 1 # Sui.

Then a quantile class of distributions (Lavine, 1991) is defined as:

G
Q
l;u ¼ {p : li # pðIiÞ # ui}

In words, quantile classes are defined by placing upper and lower bounds on the prob-

ability that a parameter value lies within each of a finite number of intervals. Quantile

classes are relatively easy to interpret, elicit from experts, and use to calculate bounds on

expectations (Lavine, 1991). However, they too admit distributions which contain point

masses at specific parameter values. They therefore tend to be “too broad,” especially in

higher dimensions.

Density ratio classes

A density ratio class (DeRobertis and Hartigan, 1981) is defined as:

GDR
l;u ¼ p :

f ðuÞ

f ðu 0Þ
#

uðuÞ

lðu 0Þ

� �

where f denotes the probability density of p (assuming it exists), and l and u are two

bounded nonnegative functions, such that lðuÞ # uðuÞ. In words, density ratio classes are

specified by placing bounds on the ratio of probabilities. They can also be interpreted as

sets of measures with (unnormalized) densities between given upper and lower bounds.

A set of probability measures is then obtained by normalizing these measures. In few

dimensions, the calculation of bounds on expectations for density ratio classes is rela-

tively straightforward (DeRobertis and Hartigan, 1981). They enjoy convenient math-

ematical properties such as marginalization invariance, which makes it possible to reduce

high dimensional problems to the one dimensional case and to propagate classes through

functions while maintaining class structure (Wasserman and Kadane, 1992). The major

disadvantage of this class is that it may be difficult to elicit.

Density bounded classes

A density bounded class (Lavine, 1991) is defined as:

GDB
l;u ¼ {p : lðuÞ # f ðuÞ # uðuÞ}

where again f denotes the density of the probability distribution p, and l and u are two

bounded nonnegative functions, such that lðuÞ # uðuÞ. In words, density bounded classes

are specified by placing upper and lower bounds on densities. The resulting class is the

set of all normalized densities between these bounds, thus avoiding densities with

extreme peaks or other possibly unreasonable features. Bounds on expectations can be

calculated according to Lavine (1991). Elicitation and interpretation is simpler than for

the density ratio class.

1-contaminated classes

For a fixed distribution po and 1 [ ½0; 1�, an 1-contaminated class is defined as:

GEC
l;u ¼ {p ¼ ð12 1Þ ·po þ 1 · q : q [ Q}

where Q is an alternate set of distributions. The 1-contaminated classes are easy to work

with and have a rather logical interpretation. However, if Q is a large class of distri-

butions (for example the set of all probability distributions), the 1-contaminated class is
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also large, especially in high dimensions and with large values of 1. Elicitation can be

straightforward (depending on Q) because only the reference distribution p0 and the

value of 1 have to be determined, but this makes it not very flexible.

Climate change example

To simplify comparison with other published studies, we follow the typical procedure for

uncertainty analysis exemplified by New and Hulme (2000), Webster et al. (2003), and

Kriegler and Held (2003). Explicit emissions scenarios and key model parameters are

used as inputs to a simplified deterministic climate model which calculates atmospheric

concentrations and global mean temperature increase. Emissions scenarios correspond to

a “business as usual” scenario (Table 1) and various reduction scenarios, assumed to be a

constant percentage of the business as usual scenario in each of the next 100 years. Only

emissions of carbon dioxide are considered, this being the main GHG and a possible

proxy for all other GHGs.

Climate response model

Because of our interest in incorporating cost functions into our analysis, the climate

model we use was derived from the cost-benefit analysis of Maddison (1995). We pro-

grammed the dynamic non-linear model of Maddison and summarized the results as

simple functions through which all the probability classes described in the previous sec-

tion could be easily propagated. In this way, atmospheric carbon dioxide concentration in

the year 2100, [CO2]2100, is estimated as

½CO2�2100 ¼ 6502 3:126 ·P ð1Þ

where [CO2]2100 is in ppv, and P is the annual percent emissions reduction. Equation (1)

implies that under the “business as usual” case, the carbon dioxide concentration in 2100

will be 650 ppmv. The corresponding increase in global mean surface air temperature,

DT2100, is then estimated as

DT2100 ¼
DT2x

ln 2
ln

½CO2�2100

½CO2�1990

� �
þ 0:255 ð2Þ

where [CO2]1990 is the carbon dioxide concentration in 1990 (approximately 350 ppmv),

and DT2x is the climate sensitivity, defined as the increase in temperature resulting from a

doubling in atmospheric CO2 concentration relative to 1990 levels. Climate sensitivity

Table 1 Gross world national product (trillion $US/yr) and global carbon dioxide emissions (GtC/yr)

assumed for the business as usual scenario (from Maddison, 1995)

Year GWNP (trillion 1990$US/yr) Emissions (GtC/yr)

1990 22.92 7.5
2000 30.97 8.5
2010 39.77 10
2020 51.06 11.4
2030 66.55 12.6
2040 81.94 13.6
2050 100.89 14.5
2060 122.73 15.6
2070 149.31 16.8
2080 180.64 18
2090 217.35 19.2
2100 261.52 20.3
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has been identified as the most important uncertain model parameter and will be the

focus of our uncertainty analysis.

Economic model

The costs of climate change consist of two principal components: emissions abatement

costs and warming-induced damage costs. Using Maddison’s (1995) survey of various

abatement cost modeling studies and his projected global economic growth (Table 1), we

derived the following summary relationship, expressed as a function of annual percent

emissions reduction, P,

ABCOST2100 ¼ 0:001 ·P3 ð3Þ

where ABCOST2100 is the cumulative abatement cost by the year 2100 in trillions of con-

stant 1990 US dollars, assuming no future discounting. Total damage costs were also

derived from a survey of Maddison (1995) and can be approximated as

DAMAGE2100 ¼ 14:729ðDT2100Þ
2 þ 24:636ðDT2100Þ þ 23:924 ð4Þ

where DAMAGE2100 is the cumulative damage cost by the year 2100 in trillions of con-

stant 1990 US dollars, again assuming no discounting.

Without doubt, the climate and cost models represented by equations (1) – (4) are

exceedingly simple. We do not intend the present analysis to be realistic. Rather, our

goal is to demonstrate the development, propagation, and use of various imprecise prob-

ability representations within the general context of climate change. For these purposes,

the simple models given above suffice. We leave it to experienced climate scientists and

economists to substitute their own more complex, and possibly more realistic, models

into this framework.

Class specification

As mentioned above, the climate sensitivity, DT2x, is a critical model parameter because

it is uncertain and model results are very sensitive to it. Therefore, as in most other

uncertainty analyses of climate change (New and Hulme, 2000; Andronova and Schle-

singer, 2001; Kriegler and Held, 2003; Webster et al., 2003), uncertainty about this par-

ameter will be the focus of our study. All other assumptions, including future economic

growth, carbon dioxide emissions, and other model parameter values will be assumed to

be known with certainty. Also, as with other studies, we use the elicitations of Morgan

and Keith (1995) as the basis for constructing sets of distributions on DT2x. Morgan and

Keith (1995) interviewed 16 climate experts, assessing points on the cumulative distri-

bution function of DT2x. However, expert #5 gave responses that differed fundamentally

from the others, both in magnitude and degree of uncertainty. Therefore, to reduce com-

plications in this simple example, we exclude the assessment of this expert from our anal-

ysis. Some of the experts estimated points corresponding to every 5th percentile, while

others only estimated every 10th percentile. For consistency, we only used the 10th

percentile estimates for all experts (Figure 1).

Application of the various classes to summarizing the responses of the experts should

incorporate information from the experts themselves about the appropriateness of the

defining assumptions. However, in our case, we only had access to the information con-

tained in Morgan and Keith (1995). Therefore, each of the classes should be viewed

simply as attempts to use the salient features of the experts’ distributions to construct a

set which contains all distributions that have those features. The rationale could be that

the interviewed experts are representative of the set of all experts who might provide
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assessments and that we would like to extend our results to represent that broader set.

Alternatively, the various classes can be seen as attempts to “robustify” the assessments

that are available. In either case, each of the different classes focuses on different salient

features of the assessments to define the set, as follows.

† Parametric family – It was assumed that all distributions in the set are Gaussian, and

means and standard deviations were fitted to the elicited percentiles by minimizing the

Kolmogorov-Smirnov measure for each expert. The maximum and minimum values

of each parameter across the experts (m ¼ ½1:86; 3:48�, s ¼ ½0:95; 1:97�) were then

used as bounds to specify a set of Gaussian distributions, assuming independence

between the parameters.

† Probability boxes – It was assumed that the minimum and maximum values of DT2x
across the experts for each assessed percentile provide bounds on a set of cumulative

distributions, which could be fully defined by linear interpolation between the assessed

points.

† Quantile classes – Quantile classes assume that the experts’ assessments provide

bounds on the probability that the value of climate sensitivity is within certain defined

intervals. In this case, the DT2x range was divided into one degree intervals and the

maximum and minimum CDF difference across the expert responses was calculated

for each interval. These values were then taken to represent the upper and lower

bounds on the probability for each interval.

† Density ratio classes – The density ratio class was specified by linearly interpolating

between the points on the CDF assessed by each expert and differentiating to yield

corresponding densities. Maximum and minimum densities across the experts were

then calculated at each point and interpreted as upper and lower bounds on a set of

unnormalized densities.

Figure 1 Elicited probability distributions of climate sensitivity shown as cumulative distribution functions

(top) and probability densities (bottom). The solid points represent assessed values corresponding to every

10th percentile. (Data from Morgan and Keith, 1995)
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† Density bounded classes – The bounds used to specify the density ratio class were

also used to define the density bounded class. However, for this class only normalized

densities between these bounds were considered.

† 1-contaminated classes – To specify an 1-contaminated class, the average density at

each value of DT2x was calculated and used as the reference distribution po. The set

of all distributions between the minimum and maximum values of DT2x deemed poss-

ible by the experts, [23, 10], was then used as the alternate set, Q. The contamination

factor, 1, was set at an arbitrary level of 0.25.

Computational methods

A number of properties of our climate model simplify the necessary computations. The

monotonic relation between climate sensitivity and global warming (Eq. 2) means that

class types are preserved upon propagation through the climate model. That is, if uncer-

tainty in climate sensitivity is described by a particular class, then the resulting uncer-

tainty in global temperature can be described by the same class. This means that the

methods described by Lavine (1991) can be used to calculate the upper and lower bounds

on expected cost over the sets of probability measures derived for global temperature.

Additionally, in our model, only the damage cost is subject to uncertainty in temperature,

as the abatement cost is fixed for a given level of emissions reductions. Because the

damage cost function is monotonic, identification of the “critical” distributions within

each class that determine the upper and lower bounds on expectations is relatively

straightforward (Lavine, 1991). While the model assumptions leading to these simplifica-

tions may not be entirely realistic, they improve the didactic value of this example.

Results

If the relationship between carbon dioxide emissions and global warming were precisely

determined, and economic cost were the only consideration, then the optimal emissions

reduction (24%) would be at the minimum of the total cost function (Figure 2, vertical

dotted line). When uncertainty in climate sensitivity is considered and represented by a

conventional probability distribution, then the resulting distribution on global temperature

Figure 2 Abatement cost as a function of emissions reduction (dashed line, bottom axis), damage cost as a

function of global temperature increase (dot-dashed line, top axis), and total cost as a function of both (solid

line) assuming no uncertainty between emissions and temperature. The vertical dotted line represents the

emissions reduction and corresponding temperature increase with minimum total cost, assuming no

uncertainty
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rise can be estimated and used to calculate expected damage cost for each emissions

level. This expected damage cost can then be added to the deterministic abatement cost

to yield the expected total cost. The optimal emissions reduction level would then be the

one that minimizes this expected total cost. In this case, the result of representing DT2x
by a precise density function (the density, po, used in the 1-contaminated class) is that a

slightly greater emissions reduction (26%) would be chosen to offset the damage costs

associated with the possibility of large temperature increases. The expected total cost for

this case would be $197.2 trillion.

When sets of probability measures are used to describe imprecision in the distribution

of DT2x, the expected total cost for each level of abatement is no longer unique. Rather,

upper and lower bounds on expectations are the result, and these bounds may be highly

sensitive to the choice of class representation (Figure 3). This is because each class is

more or less liberal in the probability distributions it allows. For example, the quantile

class, which leads to the widest interval between upper and lower expected costs, allows

relatively high probability to be assigned to very low or high values of DT2, in part

because of the imprecision inherent in discretization of the elicitation process (Figure 4).

Similarly, the density ratio class can assign greater relative probability to the extreme

values, because it is not restricted to containing normalized densities. In this case, the

critical density function is even bimodal. The critical distributions of the 1-contaminated

class assign all of the “contamination probability” to the allowable extreme points, also

leading to very wide expectation bounds. The Gaussian family, however, is relatively

narrow tailed, and the critical upper density – the one with the greatest mean and greatest

variance – does not assign much likelihood to high values of DT2, thus limiting the

upper expected cost. In this case, the probability box also leads to tight bounds relative to

some of the other classes. However, this may not be true in general when more complex

cost functions are used that are sensitive to the possibility of point masses.

For the purposes of decision-making, when a given class leads to intervals on expec-

tations that overlap for two or more emissions reduction levels, then conventional

decision theory does not provide a basis for choosing between them. Alternate decision

criteria are required to arrive at a unique solution. Cheve and Congar (2002) recommend

using a criterion of maximum lower expected utility, or, as it applies in this case,

Figure 3 Upper and lower expected total cost for a 0% emissions reduction for each of the six classes

(G = Gaussian, PB = probability box, Q = quantile, DR = density ratio, DB = density bounded, EC =

1-contaminated). The horizontal dashed line represents the expected cost resulting from a precise

distribution on climate sensitivity, and a 0% emissions reduction
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minimum upper expected cost. They show that adoption of this criterion leads to a

decision that satisfies an economic interpretation of the precautionary principle. That is,

if the chosen decision is optimal with respect to this criterion, then whatever distribution

may eventually realize, the decision maker cannot be reproached a posteriori for lack of

precaution. Cheve and Congar (2002) also show that no other decision exists that satisfies

this principle. That is, if the decision chosen is not optimal with respect to this criterion,

then there exists at least one probability distribution in the set for which the decision-

maker can be shown to exhibit a lack of precaution if it realizes. As the precautionary

principle is often cited as being appropriate for situations of environmental risk (CEU,

2000), we adopt the criteria of minimum upper expected cost as the basis for choosing

the appropriate emissions reduction level for each class representation (Figure 5).

Figure 4 Representations of each of the selected classes (G = Gaussian, PB = probability box,

Q = quantile, DR = density ratio, DB = density bounded, EC = 1-contaminated). Thin lines represent

bounds defining the sets, and thick lines represent the critical distributions determining the upper expected

damage cost for a 0% emissions reduction. Both cumulative probability and probability density are shown

for the critical distributions for G and PB. For EC, the critical distribution assigns point mass of 0.25 to a

value of 10 (shown as a vertical line)

Figure 5 Upper and lower bounds on expected total cost for the density bounded class, as a function of

emissions reduction. The vertical dotted line represents the emissions reduction with minimum upper

expected cost (shown by an open point)
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More liberal classes generally lead to higher upper expected damage costs for a given

emissions level. These damage costs can be at least partially reduced through further

emissions reduction. This means that according to the precautionary principle, the chosen

reduction will be somewhat greater for these liberal classes, and the minimum upper

expected total cost somewhat higher (Table 2). There is as much as a 10.6% emissions

and $106.8 trillion difference between the chosen reduction levels under the various

classes, and an 18.5% emissions and $146 trillion difference between the 1-contaminated

class and a precise distribution. This last difference can be considered the price of

precaution.

Discussion

Despite being based upon the same set of expert elicitations, the different distribution

classes used in this analysis lead to very different upper and lower bounds on the

expected total cost of climate change. However, each class also incorporates additional

assumptions which cannot be supported or refuted using the available information. It is

precisely these assumptions that are responsible for the different expectation bounds. It

does not appear that, for the climate change model, the probability box representation

chosen by Kriegler and Held (2003) leads to greater imprecision than some of the other

possible classes. However, the choice of class should not be arbitrary, but should be justi-

fied by acknowledgment of the underlying assumptions. For example, are we willing to

allow sharp peaks or point masses? Is there reason to constrain ourselves to distributions

of a particular parametric family? Should we assume that the density function must be

unimodal? Can we state assumptions about the ratio of possible densities? Is probability

assessment facilitated by discretization of the uncertain quantity? The answers to these

questions will point to particular suitable classes.

Computational complexity may be another important factor to consider. In the

example presented here, the climate and cost models were relatively simple. The assump-

tion of a monotonic dependence of global temperature on climate sensitivity preserves

class type upon propagation of uncertainty through the climate model. This in turn

allowed for the application of established techniques to determine the expectation bounds

for the different classes. Some of the classes, such as the density ratio class, enjoy this

property of marginalization invariance in general, even for non-monotonic transfer func-

tions. Others, such as the Gaussian family, do not. The monotonicity of the damage cost

function also greatly simplified the calculations of expectation bounds. However, in one

dimension all the classes can be handled numerically for more general cost functions as

well. Nevertheless, calculations with probability boxes in particular can become quite

involved. In higher dimensions, all calculations quickly become computationally expens-

ive or even impracticable. An assumption of independence between parameters can ease

the computational burden in such situations.

Table 2 Minimum upper expected total cost and corresponding emissions reduction for each considered

class

Class Minimum upper expected total cost (Trillion $US) Emissions reduction (%)

Gaussian family 236.3 33.7
Distribution bands 265.5 36.7
Quantile 337.4 43.5
Density ratio 329.4 42.6
Density bounds 307.7 40.7
1 Contam. 343.2 44.5
Precise distribution 197.2 26.0
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We adopted the criterion of minimum upper expected cost to resolve the decision

dilemma introduced when imprecise probabilities preclude a unique choice based on

minimum expected cost alone. This criterion is not a part of conventional decision theory

but is consistent with an economic statement of the precautionary principle. Other criteria

would also be possible, such as minimum lower expected cost or minimum upper regret

(Cheve and Congar, 2002). However, these do not seem appropriate for the climate

change problem. Another option would be to consider the distribution of the predicted

difference between two options, rather than a distribution for each option separately. For

example, the distribution of the predicted difference in temperature between a given

emissions reduction scenario and the business as usual scenario could be estimated. If the

two have some of the same sources of uncertainty, then the distribution of the difference

may be significantly more precise than the distribution of either alone (Reichert and Bor-

suk, 2005). This may improve a decision maker’s confidence that one option is better

than the other, even if the actual outcome is not well-known.

In our analysis, the sets of distributions on the climate parameter DT2 were based

upon expert elicitation, without any further comparison against data. However, these sets

could also serve as classes of priors in a process of Bayesian inference (Berger, 1984).

That is, a comparison against actual data or model results could be used to modify prior

beliefs, as was done for precise prior distributions by Forest et al. (2002) and Webster

et al. (2003). In this way, representation of climate sensitivity and predictions of global

warming can keep up with advances in scientific knowledge.

Conclusions

Uncertainty is an important consideration in model-based climate change decisions. How-

ever, there is often disagreement or ambiguity regarding the appropriate probability distri-

butions to use in describing this uncertainty. The use of sets of probability measures

provides a potential solution but requires careful attention to practical and conceptual

considerations to choose an appropriate class. We have shown that different classes can

lead to very different decisions when minimum upper expected cost is employed as the

decision criterion. Clearly, more research is required into the appropriate class and set

specifications for key model parameters. A more realistic climate model should also be

adopted before accurate results can be obtained.
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