

A Collaborative Approach to Wind and Flood Modelling

Frank Lavelle (ARA) and Stephen Hutchings (JBA) Oasis Insight Conference, London May 4, 2023

© 2023 Applied Research Associates, Inc. • ARA Proprietary

INFRASTRUCTURE

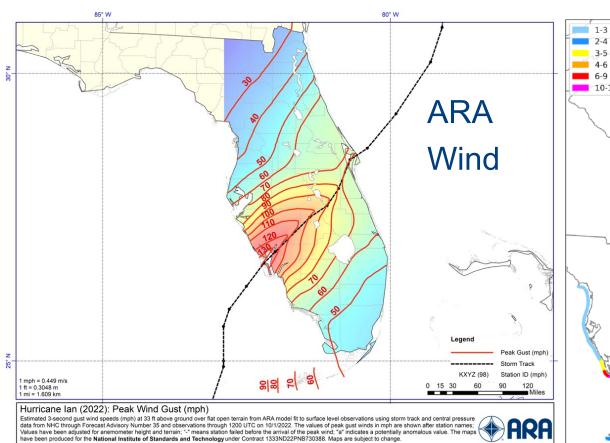
Overview

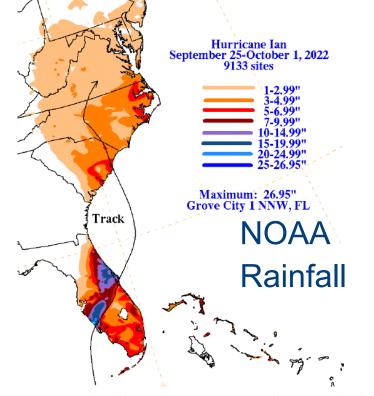
- Maximum intensity observations from some recent mainland U.S. tropical cyclones
- TC event set challenges
- TC rainfall
- Inland flood challenges
- Implementation on Oasis and NRMC
- Summary and next steps

Maximum Intensity Observations from Some Recent U.S. TCs

Event	U.S. Landfall Category	CPI-Adjusted Economic Loss (\$B)	Peak Gust (kt)	Peak Storm Tide (ft)	Total Rainfall (in)
2001-Allison	0	14	55	3	37
2004-Charley	4	25	139	13	5
2004-Ivan	3	32	93	15	17
2005-Katrina	3	191	117	28	15
2005-Wilma	3	29	102	7	11
2008-lke	2	41	97	14	18
2012-Sandy	0	85	78	16	8
2017-Harvey	4, 0	153	122	9	48
2017-Irma	4, 3	61	104	8	22
2018-Florence	1	29	91	11	34
2018-Michael	5	30	121	16	12
2020-Laura	4	27	116	10	12
2021-lda	4	81	106	13	13
2022-lan	4	114	122	13	27

Maximum Intensity Observations from Some Recent U.S. TCs


Event	U.S. Landfall Category	CPI-Adjusted Economic Loss (\$B)	Peak Gust (kt)	Peak Storm Tide (ft)	Total Rainfall (in)
2001-Allison	0	14	55	3	37
2004-Charley	4	25	139	13	5
2004-lvan	3	32	93	15	17
2005-Katrina	3	191	117	28	15
2005-Wilma	3	29	102	7	11
2008-lke	2	41	97	14	18
2012-Sandy	0	85	78	16	8
2017-Harvey	4, 0	153	122	9	48
2017-Irma	4, 3	61	104	8	22
2018-Florence	1	29	91	11	34
2018-Michael	5	30	121	16	12
2020-Laura	4	27	116	10	12
2021-lda	4	81	106	13	13
2022-lan	4	114	122	13	27



Hurricane Ian Hazard Footprints

Hurricane Ian NHC Storm Surge Analysis (AGL) 1-3 ft 2-4 ft 3-5 ft 4-6 ft 6-9 ft 10-15 ft **NOAA** Surge

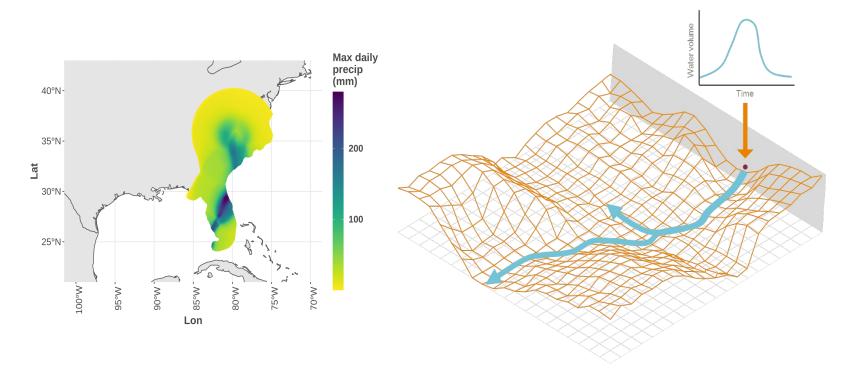
Analyzed storm surge inundation (feet above ground level) along the coasts of $\;\;$ Fig. Georgia, South Carolina, and North Carolina from Hurricane Ian.

.nalysis of storm total rainfall (inches) for Hurricane Ian courtesy of David Roth of the \(\frac{1}{2}\) Weather Prediction Center.

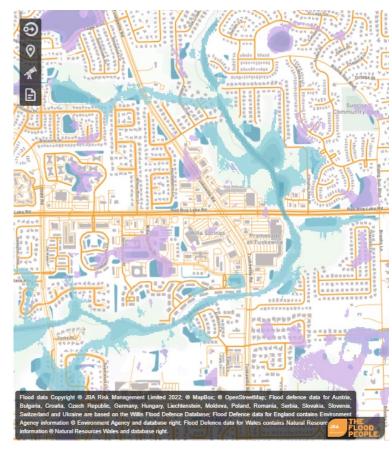
Stochastic Tropical Cyclone Event Set Challenges

Ability to:

- Model TC tracks from genesis to lysis
- Produce properly correlated wind, surge, rainfall, and inland flood footprints
- Fit historical TC frequencies, intensities, and seasonality
- Adjust for current and future climatology using gridded environmental parameter outputs from a validated and bias-corrected General Circulation Model (GCM)
- Account for sea-level rise and other important pre-event conditions



INLAND FLOOD CHALLENGES



Maintain data integrity

Simulation of catchment response

Data granularity

IMPLEMENTATION ON OASIS & NRMC

ODS
Open Data Standards

Portfolio Import Calculation of GU Loss

Pass to Oasis Financial Engine

Currently two independent workflows with consistent Event Set allowing combination of event loss at PLT

ODS
Open Data Standards

Portfolio Import Calculation of GU Loss

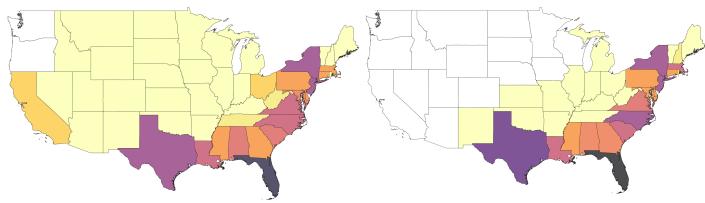
Pass to Oasis Financial Engine

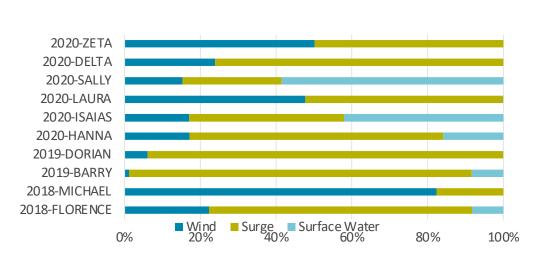
Event ID	ARA Output	JBA Output	Event Type
Event_1	\$1,374,202		TC Wind
Event_2	\$901,690	\$1,203,376	TC Wind & Flood
Event_3		\$1,111,107	NTC Flood
Event_4	\$615,545		TC Wind
Event_5	\$875,431		TC Wind
Event_6		\$136,414	NTC Flood
Event_7		\$814,061	NTC Flood
Event_8	\$1,749,189	\$147,149	TC Wind & Flood
Event_9	\$1,600,854	\$1,284,078	TC Wind & Flood

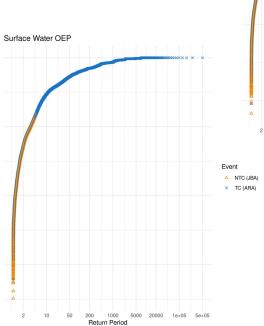
IMPLEMENTATION ON OASIS & NRMC

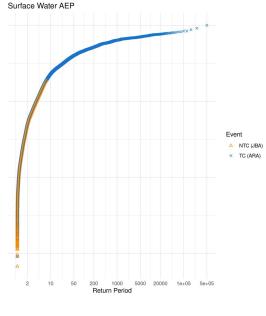
Aiming for single workflow

Portfolio Import Calculation of GU Loss


Pass to Oasis Financial Engine


Event ID	ARA Output	JBA Output	Event Type
Event_1	\$1,374,202		TC Wind
Event_2	\$901,690	\$1,203,376	TC Wind & Flood
Event_3		\$1,111,107	NTC Flood
Event_4	\$615,545		TC Wind
Event_5	\$875,431		TC Wind
Event_6		\$136,414	NTC Flood
Event_7		\$814,061	NTC Flood
Event_8	\$1,749,189	\$147,149	TC Wind & Flood
Event_9	\$1,600,854	\$1,284,078	TC Wind & Flood


STATUS & NEXT STEPS



THANK YOU

Email: gfreimarck@ara.com

Phone: +1 984-233-4779

Website: https://www.ara.com/hurloss

Email: hello@jbarisk.com

Phone: 01756 999919

Website: www.jbarisk.com

THE SMALL PRINT

© JBA Risk Management Limited 2023. All rights reserved.

The information in this presentation was prepared by JBA Risk Management on 18 May 2023 for Oasis conference and is for illustrative purposes only. Please don't use it without JBA's permission.

Copyright and acknowledgements

Background maps - Ordnance Survey data © Crown copyright and database right 2015

© Geoperspectives, Mapbox and OpenStreetMap

Flood defences data used in the maps in this presentation are based in part on: The Willis Flood Defence Database; FEMA National Flood Hazard Layer; US Army Corps National Levee Database (USA); Flood Protection Works (British Columbia, Canada); visual information from Google Earth and Google Street View