EUROPEAN WINDSTORM

Using seasonal forecasts to enhance our understanding of extreme windstorms

April 2024
Sandra Hansen, Head of International Peril Advisory, Guy Carpenter
(In collaboration with Jacob Maddison and Jennifer Catto, University of Exeter)

A business of Marsh McLennan
1. Motivation
2. Methodology and Validation
3. Implications for Risk
4. Takeaways
Motivation
Problems we face in understanding risk:

Short Observational Records
- Good quality observational / reanalysis gust data is only available for a relatively short period; not sufficient to understand tail risk. Climate models suffer from coarse resolution.

Choice of Calibration Period
- The choice of calibration period affects the storm frequency and intensity distribution, due to natural variability.

Storm Metrics
- Different studies use different measures of storm severity; difficult to compare directly with catastrophe models.

Collaborative Research

European Windstorm

Guy Carpenter industry applications and evaluation capabilities

Research Collaboration

University of Exeter scientific expertise
Methodology and Validation
Methodology

- Met Office (GloSea6) seasonal forecast model:
 - 1993-2016 (24 years)
 - 4 hindcast initiation dates
 - 7 perturbed ensemble members

- Storm Severity Index (SSI) calculation using catastrophe model definition

- Storm tracking with Hodges algorithm (1994, 1995, 1999) using mean sea level pressure field

- Bias correction and conversion from mean wind speed to gust using ERA5

- Resulting 672 year event set (tracks, footprints, SSIs)
Model Fidelity

- North Atlantic storm track is reasonably well represented in GloSea6 model

- Slight overestimation of near surface wind speeds for some countries
Implications for Risk
Extreme Storm Characteristics

Extreme storms (SSI > ERA5 max):
- Longer lasting (+36 hrs longer)
- Greater pressure anomaly
- Travel further (+2000km)
- Travel at greater speeds (+8km/h)

More potential for damage

Distributions of (a) the number of points constituting each storm’s track, (b) the pressure anomalies of the cyclones at each of these points, (c) the total distance travelled by the cyclone during their lifetimes, and (d) the average speed at which they move. Distributions are shown for unprecedented storm and non-extreme storms within the European domain. Orange lines and green triangles denote the medians and means of the data, respectively.
GloSea6 extended event set allows us to evaluate the frequency/intensity distribution in the models and improve our understanding of tail risk.

ERA5 reanalysis: Hourly data on single levels, 10m wind gust since previous post-processing, 0.25x0.25 resolution, 3-second peak gusts. Event dates in the reference event catalogue are extracted from available historical model catalogues, for storms between 1972-2022. Max gust above 20m/s in 900km radius from centre at each time step, 5 day window. A Generalized Pareto Distribution (GPD) is fitted to the reference catalogue following the Peaks Over Threshold (POT) method. The median fit and its corresponding uncertainty are shown. The thresholds for POT method are selected based on the 85-95th percentiles of SSI values. University of Exeter event set is sampled for 50 years 20 times. Source: Guy Carpenter, 2023.
Industry Applications

Examples

- Frequency / Intensity
- Clustering
- Seasonality
- Cross country correlation
- Storm characteristics
- NAO connections
- Building models

Model Evaluation

Model Development

Model Sensitivities
Takeaways
We need reference datasets for **scientific benchmarking to evaluate catastrophe models**

Typical references cover a short historical period and do not use consistent measures of Storm Severity Index (SSI), making it **difficult to evaluate tail risk in the models**

Through a collaboration project we created an **extended event set of 672 years (100,000s tracks)** derived from seasonal forecasts

The event set is **useful for a number of model evaluation and development purposes**

More extreme storms than have occurred on record are identified in GloSea6 and can be used to estimate tail risk
The data and analysis provided by Guy Carpenter herein or in connection herewith are provided “as is”, without warranty of any kind whether express or implied. The analysis is based upon data provided by the company or obtained from external sources, the accuracy of which has not been independently verified by Guy Carpenter. Neither Guy Carpenter, its affiliates nor their officers, directors, agents, modelers, or subcontractors (collectively, “Providers”) guarantee or warrant the correctness, completeness, currentness, merchantability, or fitness for a particular purpose of such data and analysis. The data and analysis is intended to be used solely for the purpose of the company internal evaluation and the company shall not disclose the analysis to any third party, except its reinsurers, auditors, rating agencies and regulators, without Guy Carpenter’s prior written consent. In the event that the company discloses the data and analysis or any portion thereof, to any permissible third party, the company shall adopt the data and analysis as its own. In no event will any Provider be liable for loss of profits or any other indirect, special, incidental and/or consequential damage of any kind howsoever incurred or designated, arising from any use of the data and analysis provided herein or in connection herewith.