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We examine the problem of decision making using a probabilistic 
model when there is material uncertainty concerning the accuracy of the 
model coupled with limited information about it.  Such conditions could 
hold, for example, for the user of a complex commercial model of natural 
catastrophe insurance risk.  Working within an ambiguity-averse decision 
framework, we define bounds for a set of plausible alternative models, 
centered on the “baseline” model provided to the user.   Three types of 
bounds are defined, reflecting the model user’s assumptions about the 
unknown and inaccessible data to which the baseline model was fit. Given 
a utility function for a decision option and a bound, we first address the 
corresponding optimization problem of finding the “worst” (most adverse 
expected utility) model within the set of plausible models.  Second, we 
construct posterior mean utilities among the unbounded set of alternatives 
and show the existence of a posterior utility-minimizing worst credible 
model, i.e. the “most dangerous model.”  Among all alternative models to 
the baseline, this model has the highest product of expected disutility times 
probability that it, and not the baseline, is the correct model.  We present a 
case study of how the most dangerous model can be used as a naturally 
occurring benchmark when making decisions in the presence of model 
risk. 

Keywords: ambiguity aversion, robust control, model risk, Gilboa-
Schmeidler, model uncertainty 

JEL classification: D81, C44, C61, G22, G32, Q54 

1 Introduction 

1.1 Motivation and approach 

As the use of mathematical models in the financial services industry 
increases, the concept of “model risk” is gaining attention.  While it 
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encompasses multiple dimensions [Derman 1996], a key component is 
“model uncertainty” or “distribution model risk.” 

Uncertainty inherent in commercial natural catastrophe (“cat”) model 
outputs is widely recognized within the insurance industry and has long 
been a prominent topic at modeling conferences. In a 1997 conference in 
Bermuda, model vendor representatives were pressed for a quantitative 
measure of uncertainty around 100-year return periods (99% Value at Risk 
quantiles); no modeler was willing or able to provide one.  Moore [1998] 
and Miller [1999] derived rough estimates of uncertainty in some 
situations. Since that time there has been some advance in users’ 
understanding and vendors’ reporting of uncertainty, but the cat model 
user still cannot get the type of uncertainty assessment that is routinely 
provided in statistical analysis [Major, 2011]. 

Motivated by the concerns of users of commercial cat models, we 
examine the problem of assessing model risk under conditions of very 
limited information.  Our methods and conclusions are not limited to cat 
models however; these concerns are shared by users of other types of 
complex probabilistic models as well. 

In this paper, we identify models with probability distributions.  The 
intent is to address stochastic models whose primary outputs are 
functionals of distributions (moments, quantiles, etc.), and, often, 
representations (simulated samples) of the distributions themselves.  
Regardless of the mathematical form or computational implementation of a 
stochastic model, its essence lies in the output distribution.  For this reason, 
we feel free to ignore the particular structure and operation of a model and 
concern ourselves solely with its output distribution. 

Gilboa and Schmeidler [1989] established that a set of preferences over 
“acts” that satisfied certain properties, including uncertainty aversion, 
could be represented by a maximin utility criterion. 

We start with a simplified decision framework that resembles that of 
Gilboa and Schmeidler’s and later use their framework as designed.  In the 
simplified framework, the user specifies a set of alternative models Q 
surrounding a “baseline” model p, and chooses from a set of decision 
options A on the basis of a utility criterion: 

 
( )[ ]ωaq

QqAa
UE

∈∈
minmaxarg     [1] 

 
where a∈A is the decision (action) to be taken, ω∈Ω is the random state of 
nature realized after the decision is made, Ua is the utility function 
corresponding to the decision, and expectation is taken with respect to 
model q.  This formulation assumes that actions do not affect the 
probabilities of states of nature.  The set Q is a proper subset of all possible 
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models.  We will call Q the set of “plausible” models and define it in terms 
of one of three statistical detection criteria: the likelihood ratio between q and 
p, the Kullback-Leibler [1951] information gain, and the significance level of 
the log likelihood statistic.   

Our first task is to locate q*, the “worst plausible model” in Q.  “Worst” 
means that the user’s utility function as described by U is minimized.  We 
fix an a∈A and compute:  
 

( )[ ]ωaq
Qq

UEq
∈

= minarg* .    [2] 

 
Solution procedures are presented for all three detection criteria. 

We then introduce priors (Gilboa-Schmeidler as designed) to develop 
Bayesian posterior mean models combining the baseline and alternative 
model, in a manner reminiscent of credibility theory.  We show the 
existence of and construct “worst credible” models that minimize the 
posterior expected utility.  Whereas identification of the worst plausible 
model requires selection of a detection threshold, identifying the worst 
credible model does not.  It consolidates both the likelihood and impact of 
the true model differing from the baseline model and stands out as an 
important natural benchmark for assessing model risk and making robust 
decisions.  We therefore suggest that the worst credible model is indeed the 
”most dangerous model” to which a user should pay close attention. 

While the hypothetical user does not have access to the data nor fitting 
procedures underlying the baseline model, we nonetheless need to make 
some assumptions about what the user knows and believes about potential 
alternative models relative to the baseline. We argue that these are 
reasonable in light of the goals and general lack of knowledge on the part 
of the user.   

The specific contributions of this paper include:  
• providing actuaries with an accessible introduction to ambiguity 

averse model risk assessment,  
• proposing different bounding criteria for “worst case” construc-

tion that have more natural and intuitive interpretations than the 
information gain metric popular in the literature, and  

• presenting a natural benchmark “worst credible case” that does 
not require selection of a plausibility threshold nor penalty 
coefficient, as is common in the literature. 

1.2 Background on robust control and ambiguity aversion 

The theory of robust control, developing in the late 1970s and early 
1980s, aims to design control systems that perform well despite their 
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design assumptions not holding exactly or at all times [Zhou & Doyle 
1997].  Robust control typically borrows the maximin principle from game 
theory [Osborne & Rubinstein 1994]. Decision theorists have been aware of 
problems that classical expected-utility decision theory has in dealing with 
ambiguity (Knightian uncertainty) since the Ellsberg [1961] Paradox.  
Actuaries are more familiar with the concept of probabilistic ambiguity 
under the name of parameter risk [Venter & Sahasrabuddhe 2012].   

Robust control concepts migrated to economics in the 1980s and 1990s, 
with axiomatic characterizations of “ambiguity aversion” by Gilboa and 
Schmeidler [1989], Epstein and Wang [1994], Anderson et al. [2000], 
Hansen and Sargent [2008], and others.  Ambiguity aversion causes the 
decision maker to doubt the currently accepted probability model, and to 
consider alternatives, making decisions that are robust with respect to 
model misspecification. 

In the Gilboa-Schmeidler framework, the utility maximization problem 
considers a bounded set of alternative models.  In the Hansen-Sargent 
framework, the set of alternative models is unbounded, but there is a 
“penalty” function that compensates utility as the alternative models get 
“farther away” from the baseline model.  When Gilboa-Schmeidler bounds 
are defined in terms of Kullback-Leibler information gain, a Hansen-
Sargent penalty function naturally arises from the Lagrange multiplier 
formulation of the bounded optimization problem.  Thus the two 
frameworks are intimately connected. 

Friedman [2002] addresses the problem of extracting the worst model 
given a bound on information gain.  Breuer & Csiszár [2013] additionally 
solve for bounds defined by Bregman distance and f-divergences, which 
include information gain and likelihood as special cases. 

Goldfarb & Iyengar [2003], Garlappi, Uppal, and Wang [2007], and 
other authors apply these frameworks to portfolio selection.  Barillas, 
Hansen, and Sargent [2009] find that ambiguity aversion provides a 
promising explanation for the equity premium puzzle [Mehra & Prescott 
1985]. 

More specific to insurance, Kunreuther et al. [1993] present evidence 
that insurers are ambiguity averse.  Zhao and Zhu [2011] develop an 
insurance pricing framework that incorporates both risk aversion and 
ambiguity aversion.  Venter et al.’s [2004] work in applying Moeller’s 
[2004] maximum entropy martingale measure to reinsurance pricing has 
mathematical connections with this work as well.  Föllmer & Schied [2002] 
articulate the connection between “worst model” methods and coherent 
risk measures. 
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Some of the ideas in this paper have been presented in other venues 
[Major and Woolstenhulme 2011; Woolstenhulme and Major 2011; Major 
2012, 2014;]. 

1.3 Organization of the paper 

The remainder of the paper is organized as follows.  Section 2 presents a 
“model of the model user” and lays out three key assumptions about what 
the user knows and believes.  It also introduces a simple example that will 
motivate and illustrate the theory in subsequent sections.  Section 3 defines 
the three measures of plausibility and solves for the worst plausible model 
under each definition.  Section 4 introduces priors and solves for the worst 
credible (“most dangerous”) models.  Section 5 with appendix G applies 
these constructs in a case study.  Section 6 concludes.  Appendix H is an 
index of symbols.  Table 1 organizes the principal results of sections 3 and 
4. 

 
Table 1: Guide to principal results  

 
Worst 

Plausible 
Model 

Worst 
Credible 
Model 

Measure 
of 
Plausi-
bility 

Likeli-
hood 
Ratio 

§3.2  Existence and 
uniqueness of q*, one-
dimensional  root 
search.  Theorem 1, 
appendix A. 

§4.3  Existence of q∅, one-
dimensional  minimum 
search.  Theorem 6, 
appendix E. 

Informa-
tion 
Gain 

§3.3  Existence and 
uniqueness of q*, one-
dimensional  root 
search.  Theorem 2, 
appendix B. 

§4.4  Unable to formulate 
a meaningful definition 
of q∅. 

Statistical 
Signifi-
cance 

§3.4  Existence of q*, 
characterization, multi-
dimensional  minimum 
search.  Theorems 4, 5; 
appendices C, D. 

§4.5  Existence (if 
simplified) of q∅, multi-
dimensional  minimum 
search.  Theorem 7, 
appendix F. 

 

2 A Model of the Model User 

We model the decision maker / model user as being in possession of a 
“baseline” model p consisting of probabilities for a finite set of states of the 
world at some future date.  Specifically, p is an element in the simplex S = 
{(p0, p1,…, pD-1)∈RD : all pi>0 and Σpi=1}. This represents a probability 
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distribution for the categorical random variable ω taking values in Ω = {0, 
1, 2, …, D-1}.  While the theory could be developed for a more general 
probability space, this should suffice for practitioners.  Also, the 
application of these ideas in a parametric setting is fairly straightforward. 

The user also has utility functions Ua(ω) for various possible actions 
a∈A to be taken (or decisions to be made).  A utility function is simply a 
vector of length D representing the utility to the user of each outcome ω.  
For an insurer, this might be the estimated (negative) dollar value of losses 
and expenses resulting from a catastrophe of the indicated category.  We 
will further assume that the values of this vector are unique (no repeats).  
This can be done without loss of generality by combining categories that 
have the same utility. 

The user is concerned that the baseline model might be materially 
wrong; that utility-maximizing decisions being made, had they been based 
on the “correct” model, would be materially different.  Yet, she has no 
meaningful access to the underlying historical data upon which the model 
is based nor the model-building methodology that was used. Not being 
privy to these, she is unable to apply the statistician’s usual methods for 
assaying uncertainty, constructing confidence intervals or posterior 
distributions around results, etc.  There is no possibility of examining the 
goodness of fit of the model to the data.  She cannot see a likelihood 
function nor a Fisher information matrix.  There is no possibility of 
“bootstrapping” [Efron 1982] the data to refit the model. 

Understanding the extent of uncertainty around the baseline model is 
important because the user is ambiguity averse.  She prefers to take actions 
that may sacrifice expected utility as implied by p, but perform well across 
a range of elements in S . 

However, the user is not completely in the dark.  We assume she has 
the following knowledge and beliefs: 

 
 

(1) SAMPLE SIZE: The baseline model p was fitted 
(competently) to n independent and identically distributed 
observations that emerged from the same process that the future 
state of the world will follow; 

 
(2) PREFERRED LIKELIHOOD: Given a proposed alter-

native model q, the user believes that the likelihood of model p 
on the fitted data is greater than the likelihood of model q; 
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(3) PRIOR SYMMETRY: Given a proposed alternative model 
q, the user believes that prior to the availability of data, p and q 
are equally probable. 

 
The sample size assumption is relatively uncontroversial, being a 

necessary abstraction of the complexity of real-world model building.  
Preferred likelihood and prior symmetry require a bit more explanation. 

If the preferred likelihood assumption were simultaneously applied to 
all possible alternative models, then the logical conclusion would be that p 
is the maximum likelihood model among all possible models, that is, it is 
the empirical probability function of the underlying data.  This 
assumption, however, may be too strong to represent the reality of 
professional probabilistic modelling which often synthesizes both 
statistical and structural elements. 

Model-based decisions should recognize that an alternative model may 
in fact better represent the true process, and if so, the expected utility 
implied by decisions may be quite different.  The user is concerned with 
alternative models that are both plausible and material.  Models that are 
close to the baseline are not of concern because they have little impact on 
expected utility.  There is a neighborhood around the baseline model 
consisting of alternatives which are therefore not useful in the decision-
making process.  The preferred likelihood assumption is not required to 
hold for those alternatives. 

At the other extreme, models that are very different from the baseline 
are implausible, and therefore can be ignored.  That leaves the user with a 
“shell” of alternative models – not too close and not too distant – that are of 
concern.  See figure 1.  At this point in the exposition, such a shell is only a 
vague notion.  Below, we will make it precise. 

 

Plausible

BaselineMaterial

 
Figure 1: Dangerous models are materially different yet plausible. 
 



  
Page 8 

 

  

Prior symmetry is another concept that should not be pushed too far.  
For example, one might argue that if p and q are equally probable, and p 
and q’ are equally probable, then q and q’ must be equally probable as well.  
Therefore all models (or at least all of those in the shell) must be equally 
probable and, if we can agree on a suitable measure for the space of 
models, the user must believe in a “flat” prior over all relevant models. 

This is not the intent of prior symmetry.  Prior symmetry is intended to 
model the user’s beliefs only about pairwise comparisons and only when 
one of the pairs is the baseline model.  We will show below that the use 
made of this assumption is equivalent to the user believing in a particular 
class of priors in the Gilboa-Schmeidler decision framework. 

In order to illustrate the theory, we will work with a very simple 
example with D=3.  Suppose natural catastrophe experience during a year 
is either “mild” (ω = 0), “moderate” (ω = 1), or “severe” (ω = 2).  Say the 
baseline model puts the probabilities at p = (0.88, 0.10, 0.02).  Figure 2 
presents this distribution as a histogram. 

1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

 
Figure 2: Histogram view of baseline model p. 

 
Because there are only three components, we may represent the model 

as a point in the two-dimensional simplex, and we may choose to view the 
space of components 1 and 2 (moderate and severe), leaving component 0 
(mild) unstated because it must carry all of the complementary probability.  
Figure 3 presents model p in this view. 

The user is presented with a proposed alternative model q0 = (0.81, 0.15, 
0.04).  This alternative implies that severe experience is twice as likely, and 
moderate experience is 50% more likely, than what model p supposes.  
Clearly this is a materially different model. The user wonders whether the 
alternative model is plausible.  Might the vendor have “got it wrong” in 
developing model p?  The user assumes that n = 100 observations were 
used to fit model p. 

The user is concerned with other alternative models as well, and uses 
the utility function U = (0,-1,-10) that assigns $0 loss to ω = 0 “mild” 
experience, $1 to ω = 1 “moderate” experience, and $10 to ω = 2 “severe” 

Mild    Moderate   Severe 
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experience to express risk preferences.  Any model q under consideration 
implies a particular expected utility Eq[U] = U·qT.  The baseline model p has 
expected utility of -0.3; the alternative q0 has expected utility of -0.55. 
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Figure 3: State space view of baseline model p. 

 

3 Worst plausible models 

In this section we address the problem of finding the most adverse model 
given a plausibility bound.  In section 3.1 we review the applicable 
probability function and log likelihood ratio statistics.  In sections 3.2 
through 3.4 we solve the problem with plausibility defined by likelihood 
ratio, information gain, and statistical significance, respectively. 

3.1 Likelihood ratio of alternative models 

Samples drawn from a categorical distribution follow the multinomial 
distribution: 
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Here, the vector X=(x0, x1, x2) represents counts of how many of 

n=x0+x1+x2 realizations of a single draw of ω fall into each category. 
For the example, figure 4 shows the baseline model p (square), the 

alternative model q0  (large dot) and 250 independent random samples, 
each of size n=100,  (small crosses) drawn from model p.  The random 
samples are represented by their empirical probability functions (epfs).  
Because the epfs can only take on values that are multiples of 1/n = 0.01, 

p 
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the plotted values have been “jittered” (displaced by a small random 
amount) to reduce overplotting and so permit better visualization.   

It appears it is possible for p to generate data that would lead one to 
infer q0.  But does possible mean plausible? 
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Figure 4: Models p and q0 and 250 sample epfs (n=100) from p. 

 
The log likelihood ratio λ(ω) between model p and a model q is a 

random variable defined over the D elements of Ω by λ(ω) = ln(pω/qω).  We 
can extend the concept across the sample to compute the sum of log 
likelihood ratios: 

 

( ) ∑
−

=








⋅=

1

0

ln,,
D

i i

i
i q

p
xqpXλ .   [4] 

 
As a function of the data, this is the log likelihood ratio statistic. 

3.2 Most adverse given a bound on the likelihood ratio 

The user does not know the data X to which the model p was fit, only its 
size n.  The simplest assumption is that the data conforms to the model: X = 
n·p, or, equivalently, model p is the epf of the data.2  Equation 4 becomes 

 

                                                
2 While technically this constrains the vector n·p to consist of integers, we will make 

use of the continuity of subsequent algebra to ignore this constraint.  This could be 
formalized through a notion of “fractional” or weighted observations, but that is beyond 
the scope of this paper. 

q0 

p 
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( ) ∑
−

=








⋅⋅=⋅

1

0

ln,,
D

i i

i
i q

p
pnqppnλ .   [5] 

 
Figure 5 shows contours of λ as a function of q.   
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Figure 5 – Contours of log likelihood ratio (equation 5) as a function of 

q; same axes as figure 3. 
 
Model q0 has λ = 1.853, meaning that it is exp(-1.853) = 0.1567 times as 

likely to generate data X=n·p as p is. 
Our first plausibility bound is thus defined in terms of the (log) 

likelihood:  An alternative model q will be deemed plausible relative to 
the baseline model p and number of observations n if λ(n·p,p,q) ≤ λ0.  Keep 
in mind that different models on a single λ contour line will in general 
have different expected utilities.   

Say the user is concerned with models that are at least as plausible as 
the alternative q0 with λ = 1.853, and within that set, she wants to know 
which alternative q* produces the worst (lowest) expected utility Eq*[U].  
The solution is provided by the following: 

 
Theorem 1: Given a baseline model p with all positive components, 

utility function U with distinct components, and a threshold λ0 > 0  
defining a set Q={q: λ(n·p,p,q) ≤ λ0} of alternative models.  The problem 

( )[ ]ωUEq q
Qq∈

∗ = minarg  has a unique solution of the form  

( ) iii pUSkq ⋅+⋅= −∗ 1 ,     [6] 
 

q0 

p 
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where k is a normalizing factor and S satisfies 
 

( ) ( ) 






 +⋅++⋅= ∑∑ −

i
ii

i
ii USpUSpn 1

0 lnlnlnλ . 

 
Proof: Proof is provided in appendix A.  The result is a special case of 

equation 38 of [Breuer and Csiszár 2013], but we are not aware of an 
explicit discussion of this case in the literature. ▓ 

Remark: In order to provide positive components to q*, it must be the 
case that S > -min(Ui).  This is a one-dimensional search problem in S and 
is easily solved by iterative methods.  The solution will always be on the 
boundary : λ(n·p,p,q*) = λ0. 

 
Example: Figure 6 illustrates the minimizing (and maximizing) 

constrained solutions where λ0 = 1.853.   
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Figure 6: Constrained solutions for extreme Eq*[U]. 

 
The baseline model p is represented by the square inside the thick curve 

marking the boundary of models q satisfying λ(n·p,p,q) ≤ λ0.  Model q0 is 
represented by the large dot in the upper right quadrant of that boundary.  
Contours of models with equal Eq[U], spaced at units of ∆U=0.1 (higher 
utility on lower contours), are indicated by the thin diagonal lines.  The 
most adverse model q* = (0.8386, 0.1022, 0.0592) with EU = -0.6943 and least 
adverse model q+ = (0.9191, 0.0764, 0.0045) with EU = -0.1213 are 
represented by diamonds. 

The identification of q* and q+ is significant because either one (or, for 
that matter, q0) is equally likely to produce data X resembling p, but 
expected utility is very different between them.  They are models which the 
prudent decision maker should know about. 

q* 

q+ 

p 

q0 
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We put that model user in the position of deciding that alternative 
models beyond a certain likelihood ratio (0.1567) to the baseline were 
deemed implausible.  This is an intuitively reasonable conception that can 
be presented to and discussed with non-technical audiences.   

3.3 Most adverse given bounds on information gain 

Define: 

( ) ∑
−

=








⋅≡≡

1

0

ln,
D

i i

i
iq p

q
qpqµµ        [7] 

 
This is the expected value of the log likelihood ratio (based on a single 

observation; multiply by n for larger samples) of q compared to p, given 
that model q generated the sample.  It allows for the possibility that X= n·p 
was generated by q, but measures the average ln(q/p) across samples that 
are more probably closer to q than to p. 

The quantity µq is variously known as Kullback-Leibler [1951] divergence, 
cross-entropy, relative entropy, and information gain.  It has deep connections 
with information theory [Rényi 1961] and is itself a reasonable metric for 
the (directed) distance from q to p.  Burnham and Anderson [2002] show 
how information gain underpins the Akaike [1981] Information Criterion in 
selecting models.  Hansen and Sargent [2008] base their theory, robust 
decision making in the face of ambiguity, on information gain as the 
plausibility metric, and solve a problem related to Theorem 2 (below).  

Remark: Reversing the roles of p and q gives us (up to the multiplier N) 
the log likelihood developed in section 3.2.  This N=1 version of log 
likelihood is sometimes referred to as reversed relative entropy [Breuer and 
Csiszár 2013] or Burg entropy [Ben-Tal et al. 2013]. 

Information gain attains its minimum at µ = 0 when q = p.  The 
definition is extended to include some qj=0 by continuity because 

( ) 0lnlim
0

=⋅
+→

qq
q

. 

Our second plausibility bound is thus defined in terms of information 
gain:  An alternative model q will be deemed plausible relative to the 
baseline model p and number of observations n if n⋅ µ(q,p) ≤ µ0. 

The following result is well-known in the literature. 
 
Theorem 2:  Given a baseline model p, utility function U with distinct 

component values, and an information gain threshold µ0 < maxi|ln(pi)| 
defining a set Q={q:µq ≤ µ0} of alternative models.  If Q is interior to the 
simplex S, then there is a unique solution to the problem 

( )[ ]ωUEq q
Qq∈

∗ = minarg  given by  
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( )( ) ii piUckq ⋅⋅⋅=∗ exp ,     [8] 

 
where k is a normalizing factor and c satisfies 
 

( )
( ) ( )

( ) ( ) 0expln
exp

exp
µ=


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⋅⋅

⋅⋅⋅⋅
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∑

∑

i
ii

i
ii

i
iii

pUc
pUc

pUcUc
cf .      [9] 

 
Proof: Proofs appear in [Friedman 2002] and [Breuer & Csiszár 2013].  A 

proof is included in appendix B for convenience. ▓ 
Remarks: Equation 8 is the well-known Esscher [1932] transform. In the 

context of distributions, it is typically developed from a dual problem, as 
the minimum information gain (maximum entropy) solution subject to a 
utility function constraint.  The equation f(c) = µ0 is a one-dimensional 
search problem in c and is easily solved by iterative methods.  The solution 
will always be on the boundary : µq* = µ0. 

 
Example: Continue with the same p, U, and identified alternative q0 as 

before. We take µ0 = µq0 = 0.0214 as the information gain constraint.   Figure 
7 shows a trace of f(c) against c.  There is a positive as well as a negative 
solution.  The positive solution is  c = 0.3371; the negative is c = -0.1052.  
The corresponding models are q* = (0.9243, 0.0750, 0.0007) and q+ = (0.8394, 
0.1060, 0.0546). 
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Figure 7: Root finding for the information gain constraint.  

 
The information gain-bounded extreme models are close to, but not 

equal to, the solutions found in section 3.2 based on likelihood bounds, 
despite the fact that the same utility function U was used for minimization 
and the same alternative q0 was used to define the bounds of plausibility.  

q* q+ 
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The reason for this can be seen in figure 8; the constraints provide different 
bounds.  This should come as no surprise; while ln(p/q) = -ln(q/p) for each 
scenario, the expectations for the log are driven by p for the λ bounds and 
by q for the µ bounds. 

Interpreting information gain probabilistically is not quite as 
straightforward as interpreting likelihood.  With likelihood, we were 
measuring the relative probabilities of assumed X=n⋅p data under p and its 
alternative q.  With information gain, we no longer make use of 
assumptions about X and instead inquire about the typical behavior of the 
log likelihood if q were to be the data generating process. 
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Figure 8: log likelihood λ and information gain µ plausibility bounds. 
 
The closest we can come to a probabilistic interpretation is to 

exponentiate the information gain to become a likelihood ratio; specifically, 
the geometric mean likelihood ratio.  But now it is p that is unlikely relative 
to q.  So q is to be interpreted as implausible because it implies that p would 
be unlikely, if q were true. 

Creating information gain bounds for Q is therefore somewhat 
problematic for our hypothetical user.  What criteria can she use to select a 
threshold?  How can she explain what this threshold means to a non-
technical business audience?   

3.4 Most adverse given significance of hypothesis test 

The interpretation of the “preferred likelihood” assumption 
implemented in section 3.2 (likelihood ratio bound) is quite stringent; p is 
exactly the epf of the data.  The interpretation of preferred likelihood in 
section 3.3 (information gain bound) is inscrutable; p is the target for 
likelihood comparisons, but specific assumptions about X are not used. 

q0 

p 

constant λ 
constant µ 
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In this section, we want to interpret p as a very good, but not necessarily 
perfect, representative of the data.  In order to implement this, we turn to 
formal hypothesis testing with the likelihood ratio test [Neyman & Pearson 
1933]. 

Figure 9 shows the familiar p and q0 models, along with 250 (jittered) 
epfs corresponding to size n = 100 random samples drawn from q0.  
Clearly, samples are more likely to resemble q0 than p. 

Three diagonal lines are also shown.  These indicate samples X 
(represented by epfs X/n) sharing the same log likelihood of data X when 
comparing p to q0.  These contours are straight lines because λ is linear in X.  
The top line has λ = 2.14.  Samples along this line favor q by a factor of 
exp(2.14) = 8.51.  The bottom line has λ = -1.85; samples favor p by a factor 
of exp(1.85) = 6.38  The center line has λ = 0.  Samples on this line favor neither 
model. 

The user imagines performing a likelihood ratio test, deciding to reject 
the hypothesis that alternative q produced the data upon which p was built, 
in favor of p, when λ(X,q,p)<0.  The user will not be able to perform this 
test, because X is not available, but she is willing to assume that X lies 
below the middle line, i.e. λ<0.  Her metric of plausibility for alternative 
model q is the significance of the test: An alternative model q will be 
deemed plausible relative to p and the number of observations n if 
Pr{λ(X,q,p)<0|X~q} ≡ α ≥ α0. We no longer interpret preferred likelihood as 
meaning that X/n lies exactly at p, rather, we take it to mean only that it lies 
below the middle line. 
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Figure 9: Contours of λ(X,q,p). 

 
An exact calculation of this probability is given by 
 

q0 

p 



  
Page 17 

 

  

( ){ }0,,)Pr( <== ∑
∈

pqXXSwhereqX
SX

λα   [10] 

 
where Pr(X|q) is given by equation 3.  That is, all possible samples X of 
size n satisfying λ<0 are identified and their occurrence probability 
summed.  The total number of possible samples (which is the number of 
terms in a multinomial sum of D variables raised to the nth power) is given 
by (n+D-1)!/( n!·D!) [Feller 1950].   

For D=3 and n=100, the number of distinct possible samples is 176,851.  
As D increases, this quantity grows exponentially.  For D=5, it is over 96 
million.  For D=10 it is nearly 47 trillion.  This is one reason we seek an 
approximation to equation 10. 

Define µq as above in equation 7 and define 
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Whereas µq is the sample mean of the log likelihood ratio, σq2 is its 
variance.   

 
Theorem 3: Let Φ be the standard normal cdf and define 

( ){ }qXpqX ~0,,Pr <= λα  and 

( )













⋅−Φ≡Ξ

q

qnnpq
σ
µ

,, .          [12] 

Then α and Ξ are asymptotically equivalent, that is, as the sample size n 
increases without bound, α/Ξ converges to one. 

Proof:  This follows from the central limit theorem. ▓ 
 
Example: An exact calculation summing Pr(X|q0) over all possible 

samples X where λ(X,q0,p)<0 yields α = 0.1691 whereas theorem 3’s 
equation 12 yields 0.1667.   

We will use this formula, rather than the exact calculation, in the sequel.  
One reason is its tractability, compared to tabulating Pr(X|q) and λ across 
all possible samples.  A second, and more important, reason is that the 
exact calculation is not continuous in q. 

Figure 10 illustrates this, showing precise and approximate α for a 
section of alternative models with fixed q2=0.03, against the baseline model 
p and n=100.  The crosses are calculated from equation 10 whereas the line 
is calculated from equation 12. 
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We saw previously that two models q and q’ having the same λ may not 
have the same µ.  Similarly, they may not have the same α, because to do so 
they would need to have the same ratio µq /σq.  If they were to have the 
same information gain, µ, they must also have the same value for σ.  But 
this is not true in general.  If figure 8 were to be redrawn with all three 
definitions of plausibility, the new locus of models with constant 
significance α would nearly, but not quite, coincide with the locus of 
constant likelihood λ.  The locus of constant information gain µ would 
remain quite distinct by comparison.  
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Figure 10: α for q=(0.97-q1,q1,0.03) is discontinuous. 

 
 
Some properties of α = Ξ(q,p,n) are given in the following: 
 
Theorem 4: Given a baseline model p, with all positive components, and 

an alternative model q, 
a. 0 < α < ½ if q≠p. 
b. As q approaches p, α → ½. 
c. As q approaches a vertex of S (one component equal to one, all 

others zero), α → 0. 
d. As q approaches a non-vertex boundary of S (at least one but 

fewer than D-1 components equal to zero), α  approaches a 
number strictly between 0 and ½. 

Proof: The proof is presented in appendix C. ▓ 
 
The next result, to our knowledge, is new. 
 
Theorem 5:  Given a baseline model p, utility function U, and a 

significance threshold α defining a set Q = { q : Ξ(q,p,n) ≥ α }  of alternative 
models, then ( )[ ]ωUEq q

Qq∈

∗ ≡ minarg  exists and takes the form  
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where k is the normalizing factor, and A and θ are scalars such that q* 
satisfies the constraints  
 

α = Ξ(q*,p,n)    and   k = exp(Rα ⋅µq* - 1) 
 

where 
2

*

2
*

2
*

q

qqR
µ

µσ
α

+
≡ . 

Proof: The proof is presented in appendix D. ▓ 
Remark: If the “±” of equation 13 were “+” or “-“ consistently across all 

components i, q* could be found through a two-dimensional (A,θ ) 
constraint satisfaction search.  Unfortunately that is not always the case, 
making the search more difficult.  Therefore, we recommend robust 
numerical search procedures that directly target the expected utility 
minimizing q*.  The theorem can then be used to verify that the putative 
solution is of the right form.  We conjecture that the solution is unique as 
long as the components of U are distinct. 

 
Example: The Cross-Entropy (“CE”) method [Rubenstein & Kroese 

2004] was applied to find the most adverse q* with the same α-level as q0  
(α = 0.1667).  The solution is q* = (0.8382, 0.1033, 0.0586).    Regressing 
[ln(q*/p)-Rα⋅µ+1]2 on U, we find A = 3.202, θ = -3.627 and that “±” resolved 
into “-” for all components.  This solution is not far from that of section 3.2. 

4 Worst credible (most dangerous) models 

In this section we address finding credibility-weighted adverse models, or, 
equivalently, posterior expected utility given priors of a certain form.  The 
weighting or priors reflect an interpretation of the prior symmetry 
assumption.  In section 4.1 we introduce the weighting scheme.  In section 
4.2 we show it is equivalent to a particular version of the Gilboa-
Schmeidler framework as they designed it to operate on priors.  In sections 
4.3 to 4.5 we address the implementation using likelihood, information 
gain, and statistical significance, respectively, as the basis for conditional 
probability. 
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4.1 Credibility and posterior expectation 

If one had the conditional probability of the data given a model, call it 
χ(X|q), and a prior probability of each model, call it π(q), then one could 
use Bayes’ Rule to compute the posterior probability of a model given the 
data.  In the case of only two models p and q, with π(p)+π(q)=1, the formula 
is 

 

( ) ( ) ( )
( ) ( ) ( ) ( )qXqpXp

qXq
Xq

χπχπ
χπ

π
⋅+⋅

⋅
= .   [14] 

 
If we interpret the prior symmetry assumption to mean π(p)=π(q)=1/2, 

then the formula reduces to 
 

( ) ( )
( ) ( )qXpX

qX
Xq

χχ
χ

π
+

= .       [15] 

 
This carries over to posterior expectations, as well.  Conditional on the 

data X, we can compute the posterior expected utility as 
 

[ ] ( ) ( )
( ) ( )

TT UqU
qXpX

qqXppX
qXUE w ⋅≡⋅

+
⋅+⋅

=
χχ
χχ

, .     [16] 

 
Actuaries are familiar with this sort of calculation as a credibility-

weighted average between Ep[U] and Eq[U], with weights proportional to 
the conditional probability of the data given a model. 

We may then pose a problem similar to that of equation 1 of section 1.1: 
 

[ ]qXUE aq
qAa

,minmaxarg
S∈∈

    [17] 

 
This seeks the best choice where expected outcomes are calculated not 

on the worst plausible (bounded) models, but on the worst credibility 
weighted (and unbounded) model. 

4.2 Gilboa-Schmeidler 

In the Gilboa-Schmeidler framework, one solves the optimization problem     
 

[ ][ ]a
Aa

UEE θ
π

π Ψ∈∈
minmaxarg    [18] 
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where now π∈Ψ is a prior distribution on the space of models S, and Ψ is a 
specified set of such priors.  Here, θ∈S is a random model distributed as π.  
Specifically,  

 

[ ] ( ) ( )
( ) ( )∫

∫
⋅

⋅⋅
=

θπθχ

θπθχϕ
ϕπ

dX

dX
E    [19] 

 
(with a suitable interpretation of the integrals).  Thus, rather than seeking 
out the most adverse model q, one seeks out the most adverse prior, π. 

We now interpret the operations of section 4.1 in terms of this 
framework.  

Let πp(⋅) represent a “typical” (proper or improper) prior distribution, 
but assume that Eπp[θ ] = p.  That is, assume the model developers used this 
prior to fit the data and that p was the posterior mean distribution. This 
may be interpreted as a version of the preferred likelihood assumption.  
Because Eθ [U] is linear in θ, this also means that Eπp[Eθ [U]] =Ep[U].  Let 
πq(⋅) represent a point mass prior distribution giving probability one for 
any model subset A that includes q and zero for all others.  Thus Eπq[Eθ [U]] 
= Eq[U]. 

Finally, let ψq(⋅) = (πp(⋅)+πq(⋅))/2 and let Ψ = { ψθ|θ∈S}.  Clearly all 
elements of Ψ are priors on S.  It is evident that now the problem of finding 
the utility minimizing prior ψq∅ in equation 18 is equivalent to finding the 
utility minimizing model q∅ in equation 17.   

We are not quite done, however, because Gilboa & Schmeidler’s 
representation theorem requires that Ψ be closed and convex.  We first 
extend Ψ to Ψ‘ by including all finite convex combinations of elements 
ψ∈Ψ.  Because posterior utility Eψ is linear in ψ, extremal values of Eψ 
where ψ = α· ψ1 + (1-α)· ψ2 will be attained at α = 0 or α = 1, so the 
minimizing solutions in equation 18 over Ψ’ in fact occur within Ψ.  
Finally, extending Ψ’ to a closed Ψ’ by including all limits (in the sense of 
weak convergence) does not add new extremes. 

This establishes our procedure of section 4.1 as being a version of the 
Gilboa-Schmeidler equation 18.  Note, however, that most implementations 
of the theory use information gain with respect to a baseline πp to define 
the set Ψ; information gain between πp and ψq here is undefined due to the 
existence of singularities (non-coinciding mass points). 

Remark:  The set Ψ’ constructed above is known as the ε-contamination 
of πp(⋅) with all other priors, and with ε set to one-half, constantly.  Such 
sets appear often in the robust Bayesian literature. 
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4.3 Most adverse credible using likelihood 

Using likelihood as our plausibility metric, we effectively assume that 
X=n⋅p, so that χ(X|q) = Pr{ n⋅p|q} from equation 3.  Rewriting in terms of 
log likelihood ratios, equation 16 becomes 

 

[ ] [ ] ( )( ) [ ]
( )( )qppn

UEqppnUE
qXUE pq

,,exp1

,,exp
,

⋅+
⋅⋅+

=
λ
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from whence it follows that 

[ ] [ ] [ ] [ ]
( )( )qppn

UEUE
UEqXUE pq

p ,,exp1
,

⋅+
−

=−
λ

.      [21] 

 
Thus, the amount by which the posterior expected utility differs from 

the baseline model utility is a ratio: the numerator is the difference in the 
two models’ utility; the denominator is a deflator that increases with size as 
the plausibility of model q decreases.   

Figure 11 illustrates.  Recall from figure 6 that expected utility contours 
are shallow straight lines sloping down to the right.  Such a line through 
the baseline model p would neatly divide the two sets of concentric 
posterior utility contours.  Models near the baseline differ little in posterior 
utility from p’s own expected utility; neither do the implausible models 
that are far away from p.  Two global extrema are evident.  A global 
minimum exists at a model exhibiting slightly higher probability for mod-
erate events (horizontal) and substantially higher probability for extreme 
events (vertical). A global maximum exists in the opposite direction. 
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Figure 11: Posterior expected utility difference for alternative models 
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We seek to minimize this difference, that is to say, to maximize it in the 

negative, disutility, direction.  The next theorem tells us how: 
 
Theorem 6:  Given a baseline model p and utility function U, the 

solution to the problem of minimizing E[U|X,q] (defined in equations 20 
and 21), by choosing q∈S unrestricted, takes the form of: 

 
( ) ii pUBkq

i
⋅+⋅= −∅ 1    [22] 

 
where k is the normalizing factor, and B is a scalar constant. 

 
Proof: The proof is presented in appendix E. ▓ 
Remark: Note that q∅ takes the same form as q* from equation 6.  The 

derivative dE[U|X, q∅]/dB is sufficiently complicated that a direct search 
for the minimizing B in E[U|X, q∅] is preferred.  We do not know if the 
solution is unique.  Fortunately, in any particular application, a trace like 
figure 12 will reveal the nature of solutions. 
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Figure 12: Posterior utility as a function of the parameter B 
 
Example: Figure 12 shows the trace of E[U|X,q] as a function of B for 

positive B.  Clearly, the desired solution will use B>0 as that will increase 
the probability on components with more negative U. The solution is q∅ = 
(0.8531, 0.1027, 0.0442) with E[U|X,q∅] = -0.3718, some 24% worse than 
Ep[U] = -0.3.  This solution corresponds to q* at exp(-λ) = 0.415. 

q∅ 
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4.4 Can information gain be used for credibility? 

For reasons explained in the latter part of section 3.3, it seems 
impractical to use information gain between models to define posterior 
utility.  Information gain between priors, used as a mechanism to bound the 
set of priors, would be mathematically practical.  However, the problem of 
articulating an information gain threshold in a business context, alluded to 
in section 3.3, is now compounded by the fact that one would be operating 
at a whole new level of abstraction: Bayesian priors over models, not just 
models. 

Therefore we will not attempt to use information gain to define 
credibility. 

4.5 Most adverse credible using significance  

Whereas plausibility–as-likelihood assumes X=n⋅p, plausibility-as-
statistical significance assumes merely that a log-likelihood ratio test (with 
threshold zero) of the data X would prefer p to q.  Specifically, 

( ){ }qXpqX ~0,,Pr <= λα  is the probability that a sample X (here a 

random variable) generated by q would indicate p as being more likely in a 
likelihood ratio test.  Conversely, ( ){ }pXqpX ~0,,Pr1 <−= λβ  is the 

probability that a sample generated by p would prefer p to q.  We will use 
the approximation from equation 12 and write α = χ(X|q) = Ξ(q,p,n) and β 
= χ(X|p) = 1 - Ξ(p,q,n).  Substituting into equation 16 we get 

 

[ ] [ ] [ ]
βα
βα

+
⋅+⋅

=
UEUE

qXUE pq, .           [23] 

 
Equivalently, we have 
 

[ ] [ ] [ ] [ ]( )UEUEUEqXUE pqp −⋅
+

=−
βα

α
, .            [24] 

 
Similar to the situation in section 4.3, the amount by which the posterior 

expected utility differs from the baseline model utility is a product: the 
second factor is the difference in the two models’ utility; the first factor is a 
weight w = α/(α +β ) that decreases with size as the plausibility of model q 
decreases. 

We seek to minimize this difference, that is to say, to maximize it in the 
negative, disutility, direction.  Unfortunately, we do not have a theorem 
that tells us how to do this; we cannot even be assured that a solution exists 
for the problem as posed. 
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We note some properties of β and w = α/(α +β ): 
 
Theorem 7: Given a baseline model p, with all positive components, and 

an alternative model q, 
a) If q≠p then  ½<β<1, and α < α/(α+1) < w < α/(α+½) < 2⋅α.   
b) As q approaches p, β → ½, and so does w. 
c) As q approaches a vertex of S (one component equal to one, all 

others zero), w → 0. 
d) As q approaches a non-vertex boundary of S (at least one but 

fewer than D-1 components equal to zero), neither β nor w 
necessarily converge. 

Proof: The proof is provided in appendix F. ▓ 
Remark:  Despite not converging to the same value from all directions 

at a boundary of the simplex, β and w are nonetheless constrained by the 
bounds given in part (a), where α has computable values on the boundary; 
β and w do not explode.   

Despite not having theoretical backing for a solution, we may nonethe-
less apply numerical methods in search of one. If numerical methods 
indicate the worst credible model is away from the boundary, we may feel 
comfortable that a solution has been found.  Still, with no proof of 
uniqueness, all we can say is the solution provides a local minimum.   

 
Example: The CE method was applied to find the worst credible 

alternative model using the significance as weight function.  The result is 
q∅ = (0.8427, 0.1038, 0.0535) with E[U|X,q∅] = -0.3629.  This solution applies 
21% more probability to the “severe” component than does the solution in 
section 4.3, but it produces 2.4% more favorable posterior expectation. 

In our numerical work, we have  discovered that worst credible q∅ are 
not generally equal to worst plausible q* at any α level.   

For these reasons, we may want to modify our model to use an 
approximation: β = 1-α.  This is not entirely nonsensical; both are 
computed from the coefficient of variation of the random variable ln(q/p).  
The difference is that one uses q as the probability distribution and the 
other uses p.  As q approaches p, the approximation converges to an 
equality.  Figure 13 shows α+β for our example. 

With this modification, we have w = α, and theorem 4 applies to w.  The 
posterior mean function becomes continuous on the entire simplex, and 
thus attains global extrema somewhere.  Moreover, the problem of finding 
the minimal q∅ becomes, in principle, a one-dimensional search over α, 
because q∅ = q*.  We conjecture the solution is unique. 
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Figure 13: α+β is approximately one. 

 
Example: Using CE with this modified weighting, the most adverse 

credible model is q∅ = (0.8424, 0.1031, 0.0544), which is within 0.0012 
(Euclidean distance) of the unmodified solution.  The posterior expectation 
is -0.3628, only 0.0001 away from the previous solution.  This solution 
corresponds to the most adverse model bounded by α = 0.1878. 

5 Case study: decision making with model risk 

In this section we address a realistic reinsurance decision problem.  The 
probability distribution is taken from the cat model results of a real 
company, but rescaled to make it anonymous.  Pricing assumptions are 
based on an arbitrage-free methodology consistent with observed cat 
reinsurance prices at a particular point in time. 

5.1 Statement of the problem 

The company provided  a modeled distribution of annual catastrophe 
losses, presented as a D=29-dimensional categorical distribution.  The 
probabilities and corresponding direct (before reinsurance) losses are set 
out in the first two columns of table 4 in appendix G.  We visualize these 
losses in figure 14 on the vertical axis against return period (inverse of 
exceedance probability) on the horizontal axis.  The expected direct loss 
under this baseline model is 1.527. 

p 
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Figure 14: Baseline model, direct loss 

 
The company writes multiple lines of business and allocates 25 units of 

capital to this particular business segment.  The model predicts a prob-
ability of 0.78%, or once every 128 years, that 25 units or more will be lost 
due to this risk.  Losses in excess of 25 are of particular concern for 
management. 

Table 2 shows the reinsurance options being considered.  They are all of 
the aggregate excess-of-loss (XOL) type, without reinstatement provisions.   

 
Table 2: Reinsurance program choices 

Program Attach Payout Limit Exhaust Premium 
0 – No reins (bare) 0 0 0 0 0 
1 – Full/low 25 100% 10 35 0.315 
2 – Stretch/low 25 60% 15 50 0.357 
3 – Stretch/high 30 66.7% 20 60 0.365 
4 – Two layers 25 

35 
50% 
33.3% 

5 
10 

35 
65 

0.310 

 
A program will reimburse direct losses during the year that exceed the 

attachment point, at the payout rate, until the limit has been paid: 
  

Reimbursement = max{0,min[(DirectLoss-Attach)∙Payout,Limit]}.    [25] 
 
The reimbursement limit will have been reached when the direct loss 

equals the exhaustion point.  The annual premium is listed in the last 
column.  Program “0” corresponds to no reinsurance. 

The company is concerned with capital deficit, i.e., net loss amounts in 
excess of 25, where net loss is defined as direct loss plus reinsurance 
premium minus reimbursement.  The criterion for ranking the programs 
will be the expected capital deficit, corresponding to utility functions that 
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are the negative of capital deficit, as depicted in figure 15.  For example, if 
direct loss realized equals 60, program 3 provides the best coverage 
because utility is the highest (least negative).   
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Figure 15: Utility functions of reinsurance programs 

 
The expected utility (using the baseline cat model) for each program is 

as follows: 
 
Program 0 1 2 3 4 
Ep[U] -0.130 -0.079 -0.077 -0.082 -0.086 

 
Using expected utility as our conventional decision criterion, we reach 

the conclusion that all reinsurance options are superior to going without 
(program 0).  Program 2 is the best option and program 1 is next best. 

We can now apply the results of this paper to seek a program whose 
performance is robust across an array of models, one of which may 
describe the true loss process.  The company may be willing to sacrifice 
some expected utility as measured by the baseline model p if a program 
performs adequately across a larger range of uncertainty. 

5.2 Worst plausible models 

We now find, for each program, the worst plausible model using the 
likelihood method of section 3.2.  We opt for likelihood here because it is 
the simplest computationally.  We assume the baseline cat model p is 
founded on n=250 observations.  A threshold of 3 is used, that is, models 
with likelihood less than 1/3 of the baseline model are considered 
implausible.  

bare 

1 

2 

3 
4 
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The alternative models are very similar to each other and are shown in 
figure 16. 
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Figure 16: Worst plausible alternative models by program 

 
The worst plausible alternative model for program 0 is listed in 

appendix G, column 3.  The expected direct loss associated with this model 
is 2.104.  The expected utilities associated with each program are as 
follows: 

 
Program 0 1 2 3 4 
Eq*[U] -0.537 -0.419 -0.387 -0.363 -0.397 

 
These results suggest that if we prefer a reinsurance program which 

will perform well in the event that model p is wrong, program 3 is the best 
option; program 2 is now second best.  This relative comparison of 
expected utility under worst plausible conditions is useful if we have 
significant doubts about the accuracy of model p.  

 

5.3 Worst credible models 

We now find, for each program, the worst credible model using the 
likelihood method of section 4.3.  That n=250 is still assumed. 

Figure 17 shows the credibility-weighted results.  That is, the alter-
natives q∅ are computed according to Theorem 6 (equation 22), and then 
the weighted models 

qw = p + (q∅ - p)/(1+exp(λ(n⋅ p,p,q∅))           [26] 
 

are shown in figure 17.  
Again, the alternative models are very similar.  The worst credible 

model for program 0 is listed in appendix G, column 4.  The expected 
direct loss associated with this model is 1.671.   
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Figure 17: Worst credible models by program 

 
Calculations of worst credible models using significance (full α+β 

method, CE algorithm) instead of likelihood produced very similar results. 
The expected utilities across all models are given in table 3. 
 
Table 3: Expected utilities under baseline and alternative models 

Program Model 0 1 2 3 4 
Ep[U] Baseline -0.130 -0.079 -0.077 -0.082 -0.086 
Eq*[U] Worst Plausible -0.537 -0.419 -0.387 -0.363 -0.397 
Eqw[U] Worst Credible -0.232 -0.164 -0.155 -0.152 -0.163 

Eqw[U] Worst Credible 
(significance) 

-0.218 -0.151 -0.143 -0.142 -0.152 

 
Figure 18 displays the difference in expected utility between each 

reinsurance program and program 0 using the four models for comparison. 
 

5.4 Commentary 

Program comparisons under adverse alternative models are useful 
additional criteria for the company’s decisions. 

Reinsurance program 2 is superior in meeting the company’s objective 
according to the baseline model results.  However, uncertainty inherent in 
the model (“model risk”) casts doubt on that.  Programs 1 and 4, inferior 
according to the baseline, proved fragile in the alternative analyses, 
showing even worse relative performance.  They are to be rejected outright 
on those grounds.  Program 3 was seen as a superior performer under the 
alternative models.  It is robust in the face of uncertainty around the 
baseline model and deserves consideration alongside program 2. 
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Figure18: Comparison of expected utilities 
 

A more thorough analysis would expand the criteria further.   
For example, the same calculations were performed with a 95-

component discretization to test the sensitivity of the method.  While the 
expected utility values were somewhat different, the overall preference 
orderings and conclusions were the same.   

It might also be advisable to probe the sensitivity of the results to 
various utility functions.  For example, a range of convex combinations of 
expected net loss and capital deficit could be explored.  Determining the 
worst plausible and worst credible models using the likelihood definition 
of plausibility do not require lengthy simulations or arduous numerical 
calculations, so such exploration is quite feasible. 

6 Conclusion 

We have articulated an approach to assessing model risk (specifically 
model uncertainty or distribution model risk) by identifying certain 
adverse alternative models.  These models should be of concern to an 
ambiguity-averse decision maker because they are (1) materially different 
from the baseline (accepted) model, yet (2) could plausibly represent reality 
better than does the baseline.   

Our approach is generic and does not require deep insight into the 
specification of the baseline model nor access to the data upon which it was 
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fit.  This is particularly appealing for users of large-scale commercial 
models, for example, natural catastrophe models. 

Whereas the literature has tended to focus on limiting alternatives by an 
information gain threshold or penalty, we introduced two other 
plausibility criteria that are arguably superior in terms of their 
interpretation for a business audience.  The likelihood ratio (reverse 
entropy) criterion is equivalent to assuming that the baseline model 
coincides with the data upon which it was fit.  The significance criterion is 
equivalent to assuming that the baseline model is a better fit than the 
alternative, although not necessarily the best fit.   

Additionally, we introduced posterior or credibility-weighted 
plausibility, which identifies an important alternative model without 
requiring specification of the plausibility threshold.  This procedure was 
shown to be an instance of the Gilboa-Schmeidler multiple-priors 
framework, using ε-contamination of the baseline prior. 

The likelihood ratio criterion provides for efficient computation of the 
adverse alternative in either the plausibility or credibility context.  The 
information gain criterion is efficient for limited plausibility, but suffers 
from conceptual difficulties for credibility.  The significance criterion 
appears to be best approached by general-purpose optimization 
techniques. 

Finally, we applied the likelihood plausibility and credibility methods 
to a reinsurance purchase case study.  Two decision options could be 
dismissed as inferior.  However, a third deserved consideration, despite 
not being the best according to the baseline model.   
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Appendix A: proof sketch of Theorem 1 – most adverse given 

likelihood threshold 

Theorem 1: Given a baseline model p with all positive components, 
utility function U with distinct components, and a threshold λ0 > 0  
defining a set Q={q: λ(n·p,p,q) ≤ λ0} of alternative models.  The problem 

( )[ ]ωUEq q
Qq∈

∗ = minarg  has a unique solution of the form  

( ) iii pUSkq ⋅+⋅= −∗ 1 ,     [6] 
 
where k is a normalizing factor and S satisfies 

( ) ( ) 






 +⋅++⋅= ∑∑ −

i
ii

i
ii USpUSpn 1

0 lnlnlnλ . 

 
Proof: Notice that if all U components were equal then all Eq[U] would 

be equal and there would be no unique minimum.  The assumption of 
distinct components is sufficient to prevent this. Notice that the objective 
function is linear in q.  Furthermore, the set Q={q: λ(n·p,p,q) ≤ n·µ0} is 
bounded, because the space of q is bounded, and it is closed because λ 
(equation 5) is continuous in q and Q is thus the inverse image of a closed 
set.  Therefore Q is compact.  Thus, the minimum must occur on the 
boundary of Q [Kocay & Kreher 2004, p. 391].  Thus, we may rewrite the 
constraint as λ(n·p,p,q) = n·µ0. 

This is equivalent to minimizing the following: 
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where θ and S are the Lagrange multipliers associated with the µ0 and 
probability constraints, respectively.  Note that as any component qi 
approaches 0 (all pi>0 is assumed), the corresponding term pi·ln(pi/qi) 
increases without bound.  Therefore Q is interior to the simplex domain S, 
and therefore the edge constraints do not need to be represented.  
Differentiating on qj, we  obtain the first-order condition for a maximum or 
minimum of L: 
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Substituting the expressions for q and θ  into the λ constraint, we get 

( )[ ] 








+
++⋅≡= ∑∑

i i

i

i
ii US

p
USpSf lnln)(0µ    [A3] 

This is a one-dimensional search problem in S.  Feasible solutions lie in 
the disconnected set SSSS = (-∞,-max(U))∪(-min(U),∞).  For solutions S in the 
left half, θ  will be negative to compensate.  For those solutions, equation 
A3 is better represented as 

( )[ ]



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




−
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i i

i
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ii US

p
USpSg lnln)(0µ   [A3’] 

so as to obviate the need to take logs of negative numbers. 
We need to show such a solution exists and is unique.  First, we show 

there exists a solution in each of the two disconnected halves of SSSS.  In the 
right half we have:  

( )
( )

( ) ∞==
+−→∞→

SfandSf
USS min

lim0lim   

(the second holding as long as the component m corresponding to the 
minimum of U does not have probability pm=1, which it will not, given the 
assumption that all pi>0 and assuming we are not dealing with the trivial 
case D=1).  Note that f is continuous.  Therefore a solution exists in the 
right half.   

In the left half, similarly, we have: 
( )

( )
( ) ∞==

+−→∞→
SgandSg

USS max
lim0lim   

with the same comments regarding the component m corresponding to the 
maximum of U.  Therefore a solution exists in the left half as well. 

Now we show that each of the two solutions is unique in its half.  In the 
right half, 
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the latter inequality holding unless all components of U are the same, 
which is assumed not the case.  Thus the right half solution is unique.  The 
calculation of the derivative in the left half leads to the same conclusion. 

Inspecting equation A2, we can see that the right half solution puts 
more weight on components where U is lower; that is the most adverse 
solution.  The left half solution is the least adverse. ▓ 
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Appendix B: proof sketch of Theorem 2 – most adverse given 

information gain threshold 

Theorem 2:  Given a baseline model p, utility function U with distinct 
component values, and an information gain threshold µ0 < maxi|ln(pi)| 
defining a set Q={q:µq ≤ µ0} of alternative models.  If Q is interior to the 
simplex S, then there is a unique solution to the problem 

( )[ ]ωUEq q
Qq∈

∗ = minarg  given by  

 
( )( ) ii piUckq ⋅⋅⋅=∗ exp ,     [8] 

 
where k is a normalizing factor and c satisfies 
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Proof: Notice that if all U components were equal then all Eq[U] would 

be equal and there would be no unique minimum.  The assumption of 
distinct components is sufficient to prevent this.  The condition that µ0 < 
maxi|ln(pi)| is necessary because µq attains a maximum of -ln(pi) for the 
largest pi when qi=1.  For larger µ0, no solution is possible. 

The same logic in appendix A applies: the minimum must occur on the 
boundary of Q, thus, we may rewrite the constraint as µq = µ0. 

This is equivalent to minimizing the following: 
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where θ and S are the Lagrange multipliers associated with the µ0 and 
probability constraints, respectively.  Because we assume that Q is interior 
to the simplex domain S, the edge constraints do not need to be 
represented.  Differentiating on qi, we  obtain the first-order condition for a 
maximum or minimum of L: 
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Evidently, this is a solution.  Is it unique?  Rewrite equation B2 as 
 

 ( ) iii pcUcq ⋅+⋅= 21exp .     [B3] 
 
The solution must satisfy the two constraints: 
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We can eliminate c2 by solving equation B4, 
  

( ) 






 ⋅⋅−= ∑
i

ii pUcc 12 expln ,    [B6] 

 
so equation B5 becomes equation 9, defining f(c). 

 

Define ( ) ( )∑ ⋅⋅=
i

ii pUccg exp ; then ( ) ( )
( ) ( )( )cg
cg

cgc
cf ln−

′⋅=  and  

( ) ( ) ( ) ( ) ( )( )2

2 cgcgcg
cg

c
cf ′−⋅′′⋅=′  

( ) ( ) ( ) ( )


















 ⋅⋅⋅−






 ⋅⋅⋅






 ⋅⋅⋅⋅= ∑∑∑
2

2

2 expexpexp
i

iii
i

ii
i

iii puucpucpuuc
cg

c  

( ) ( )( ) ( ) 









⋅⋅−⋅+⋅⋅= ∑

> ji
jijiji ppuuuuc

cg

c 2

2
exp  

 
and evidently f ’(c)>0 for c>0 and f ’(c)<0 for c<0 because no ui=uj so all 
terms in parentheses are positive.  This means there are at most two values 
for c that satisfy f(c)=µ0; one positive and one negative.  Obviously, one of 
them corresponds to the maximum and one to the minimum of Eq[U]. ▓ 
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Appendix C: proof sketch of Theorem 4 –properties of αααα 

Theorem 4: Given a baseline model p, with all positive components, and 
an alternative model q, 

a. 0 < α < ½ if q≠p. 
b. As q approaches p, α → ½. 
c. As q approaches a vertex of S (one component equal to one, all 

others zero), α → 0. 
d. As q approaches a non-vertex boundary of S (at least one but 

fewer than D-1 components equal to zero), α  approaches a 
number strictly between 0 and ½. 

 
Proof:   
(a) It follows from Gibbs’ inequality that µq>0 and from Jensen’s 

inequality that σq>0, therefore the argument to Φ is negative.   
(b) let q = p+ε and note that Σiεi = 0 always holds.  Expand ln(qi/pi) = 

ln(1+εi/pi) terms in Taylor series to order 2, obtaining: 
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  Notice that the numerator is of order 2 but the denominator is of order 

1, therefore µ /σ → 0.  
(c) With one component, say i=0, converging to 1, µ converges to –

ln(p0)>0.  However, σ converges to 0, so the ratio diverges to +∞. 
(d) Both µ and σ can be seen to converge to positive numbers. ▓ 
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Appendix D: proof sketch of Theorem 5 – most adverse given 

significance threshold 

Theorem 5:  Given a baseline model p, utility function U, and a 
significance threshold α defining a set Q = { q : Ξ(q,p,n) ≥ α }  of alternative 
models, then ( )[ ]ωUEq q

Qq∈

∗ ≡ minarg  exists and takes the form  

 

i
i

i p
U

Akq ⋅








−±⋅=∗

θ
exp ,   [13]  

 
where k is the normalizing factor, and A and θ are scalars such that q* 
satisfies the constraints  
 

α = Ξ(q*,p,n)    and   k = exp(Rα ⋅µq* - 1) 
 

where 
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2
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2
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Proof: Theorem 4 allows us to extend the definition of α = Ξ(q,p,n) to be 
a continuous function on the entire (compact) simplex S.  Therefore, by 
Weierstrass’s extreme value theorem, Ξ will attain its extrema. 

First, we note that again the solution will occur on the boundary of Q, 

and the constraint ( )
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We may then write the problem in Lagrange multiplier form as 

minimizing 
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Differentiating with respect to qj, we get 
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Writing λj = ln(qj/pj) and ∑ ⋅=

i
iiq λµ , we have the quadratic equation 
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whose solution is 
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thus proving the assertion. ▓ 
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Appendix E: proof sketch of Theorem 6 – most adverse credible 

based on likelihood 

Theorem 6:  Given a baseline model p and utility function U, the 
solution to the problem of minimizing E[U|X,q] (defined in equations 20 
and 21), by choosing q∈S unrestricted, takes the form of: 

( ) ii pUBkq
i

⋅+⋅= −∅ 1          [22] 

where k is the normalizing factor, and B is a scalar constant. 
 
Proof:  We seek to minimize equation 21, which we rewrite here as 

( ) ( ) 11 −Λ+⋅



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 −⋅= ∑
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iii pqUL where ( )( )qppn ,,exp ⋅=Λ λ .   

As q approaches a boundary, the denominator 1+Λ increases without 
bound but the numerator remains finite.  Thus we may extend L to the 
entire simplex with a value of zero on the boundary.  Existence of a 
solution is therefore assured; not only will the function attain its extremes, 
but it will do so in the interior of the simplex.  Moreover, for q=p, L=0.  
Small perturbations to q will result in positive or negative values for the 
numerator and positive values for the denominator, so L is not identically 
zero in the simplex. 

Writing in Lagrange multiplier form, we seek to minimize 
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Notice that dΛ/dqj = -n⋅(pj/qj)⋅Λ.  Differentiating L with respect to qj and 
setting to zero gives us 
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Multiplying both sides by (1+Λ)2 then rearranging, we get 
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where, of necessity, 
1−
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Feasible solutions for B lie within the disconnected set SSSS = (-∞,-

max(U))∪(-min(U),∞).  The left hand portion (yielding A<0) will produce 
smaller denominators, thus higher weight, for larger values of U.  Thus, the 
left hand portion contains the maximizing solution and the right hand 
portion contains the minimizing solution. ▓ 
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Appendix F: proof sketch of Theorem 7 –properties of ββββ, w 

Theorem 7: Given a baseline model p, with all positive components, and 
an alternative model q, 

a) If q≠p then  ½<β<1, and α < α/(α+1) < w < α/(α+½) < 2⋅α.   
b) As q approaches p, β → ½, and so does w. 
c) As q approaches a vertex of S (one component equal to one, all 

others zero), w → 0. 
d) As q approaches a non-vertex boundary of S (at least one but 

fewer than D-1 components equal to zero), neither β nor w 
necessarily converge. 

 
Proof:  

(a) By Theorem 4(a), 0 < α < ½.  Because β = 1-α (with the model 
arguments reversed), it follows that ½<β<1.  The rest follows from 
elementary algebra. 

(b) Similarly, this follows from Theorem 4(b) 
(c) It doesn’t matter what β does; because α → 0 (Theorem 4(c)), so does 

w. 
(d) Consider the following example with D≥4; q0 and q1 converging to 0, 

other components converging to values strictly between 0 and 1.  Finite 
terms in the numerator and denominator are dominated by the unbounded 
q0 and q1 terms, so the limit expression is 
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  Let convergence operate as  q0 = t,  q1 = tk, t → 0.  In the limit the ratio 

becomes (p0+k2⋅p1)/(p0+k⋅p1)2.  This is not constant in k, so the limit does 
not exist. ▓ 
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Appendix G: Details of the section 5 example 

 
Table 4: Baseline and alternative models 

Monetary Units Probabilities  

Direct Loss Baseline Worst Plausible, 

Program 0 

Worst Credible, 

Program 0 

0.7392 0.95571 0.94882 0.95398 

9.4234 0.01110 0.01102 0.01108 

11.4227 0.00724 0.00719 0.00723 

13.4211 0.00532 0.00528 0.00531 

15.4421 0.00380 0.00377 0.00379 

17.4578 0.00332 0.00330 0.00331 

19.4496 0.00258 0.00256 0.00258 

21.4375 0.00192 0.00191 0.00192 

23.5410 0.00122 0.00121 0.00122 

25.3559 0.00118 0.00118 0.00118 

27.3889 0.00072 0.00074 0.00072 

29.5455 0.00066 0.00070 0.00067 

31.6000 0.00080 0.00087 0.00082 

33.4667 0.00060 0.00067 0.00062 

35.6667 0.00048 0.00056 0.00005 

37.3889 0.00036 0.00043 0.00038 

39.4118 0.00034 0.00042 0.00036 

41.5714 0.00014 0.00018 0.00015 

43.5333 0.00030 0.00040 0.00032 

45.7500 0.00016 0.00022 0.00018 

47.6667 0.00006 0.00009 0.00007 

49.7273 0.00022 0.00033 0.00025 

51.1429 0.00014 0.00021 0.00016 

53.3333 0.00012 0.00019 0.00014 

55.7500 0.00008 0.00014 0.00009 

57.8000 0.00010 0.00018 0.00012 

59.4286 0.00014 0.00026 0.00017 

69.7606 0.00071 0.00177 0.00098 

92.9583 0.00048 0.00543 0.00171 

    
E[Direct Loss] 1.527 2.104 1.671 

 
 
Direct Loss is the  monetary loss experienced in the absence of reinsurance.  

Baseline is the corresponding probability according to the accepted cat model.  
Worst plausible and worst credible are, respectively, the most adverse likelihood 3:1 
limited and most adverse posterior expected alternative models for the direct loss. 
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Appendix H: Index of symbols 

 
Below are symbols, each with a brief definition and where they first 

occur. 
 
a∈A  – decision option a out of choice set A; §2 
α   – significance p-level for likelihood ratio test; §3.4, eq 10 
β   – power of the test; §4.5 
χ(X|q)  – generic likelihood function; §4.1 
D   – dimension of the probability space; §2 
Eq[U]  – expected utility based on specified model; §2 
E[U|X,q]  – posterior expected utility; §4.1, eq 16 
Eπ[⋅]  – expectation with respect to prior π ; §4.2, eq 19  
λ   – log likelihood ratio; §3, eq 4 
µ   – expected log likelihood or information gain; §3.3 
n   – number of observations in baseline fitted data; §3  
p   – baseline model; §2 
π(q)  – prior probability of model; §4.1 
π(q|X)  – posterior probability of model; §4.1, eq 14 
πp(⋅)  – working prior resulted in p as the posterior; §4.2 
πq(⋅)  – point prior always results in q as the posterior; §4.2 
Ψ   – set of prior distributions on models; §4.2 
ψq(⋅)  = (πp(⋅)+πq(⋅))/2; §4.2 
q   – generic alternative model; §1.1 
q0   – a specifically identified alternative model; §3 
q*   – most adverse model given plausibility bound; §1.1 
q+   – least adverse model given plausibility bound; §3.2 
q∅   – most adverse model in posterior expectation; §4.3 
qw   – credibility weighted p,q∅ models; §5.3, eq 26 
Q  – generic set of plausible models; §1.1 
S   – D-dimensional simplex, space of models; §2  
σ   – standard deviation of log likelihood ratio; §3.4, eq 11 
θ   – random model distributed according to a prior; §4.2 
Ua(ω)  – utility function for decision option a; §2 
w   = α/(α +β ); §4.5  
ω∈Ω  – categorical r.v. taking values in a set of size D; §2 
X   – sample data observed or generated by a model; §3 
Ξ   – normal approximation to α; §3.4, eq 12 
 


